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Teaching Lasers to Control Molecules
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We simulate a method to teach a laser pulse sequences to excite specified molecular states. We use a
learning procedure to direct the production of pulses based on "fitness" information provided by a labo-

ratory measurement device. Over a series of pulses the algorithm learns an optimal sequence. The ex-
perimental apparatus, which consists of a laser, a sample of molecules, and a measurement device, acts
as an analog computer that solves Schrodinger's equation exactly, in real time. We simulate an ap-
paratus that learns to excite specified rotational states in a diatomic molecule.

PACS numbers: 33.80.—b

In this Letter we suggest a method for designing laser
pulses to control the motion of molecules, using an exper-
imental apparatus as an analog computer that learns an

optimal pulse sequence in real time. Much theoretical
work [l-3] has gone into the design of laser sequences
that can drive a reaction into a desired, thermally inac-
cessible state, but successful experimental implementa-
tion of these ideas has been an elusive goal. A major
stumbling block is the complicated nature of molecular
Hamiltonians which typically have many degrees of free-
dorn tightly coupled together, all of which may have to be
simultaneously controlled. It has been shown theoretical-

ly, under appropriate conditions, that molecules can be
controlled, i.e., fields can be designed to drive them into
desired final states [ll. However, translating these results
from theory to experiment has not been possible until

now. An underlying problem is that the methods for
designing fields requires full knowledge of the molecular
Hamiltonian which is known only approximately for sys-
terns with more than two or three atoms. In addition,
laboratory uncertainties can arise due to optical pulse
generation errors of various types. Fields designed
theoretically on the basis of an approximate Hamiltonian

may not be suSciently robust to tolerate errors arising
from the Hamiltonian as well as laboratory introduced
uncertainties.

The method we suggest leapfrogs these difficulties by
using an experimental apparatus as an analog computer
that solves Schrodinger's equation exactly with the true
laboratory field. Essentially the same system design con-
cepts already introduced [1,31 can be adopted with labo-

ratory experiments supplanting the need to solve any
equations of motion on the computer. By working with

the molecular sample of interest, the apparatus acts as an

input-output device capable of reliably reporting the ac-
tion of any introduced field upon the molecules. The ap-
paratus is then coupled to a learning algorithm capable of
recognizing patterns in the input-output measurement re-
lationships and thus guiding an iterative sequence of new

experiments. The iteration is facilitated by a cost func-
tional as in current molecular control theory, but now

only containing costs for the target state and laboratory
considerations (e.g., constraints on the form of the field).
The iteration and learning process would continue until

satisfactory convergence is reached. The overall pro-
cedure is an example of an adaptive learning network,
and a key element is the rapidity with which laser pulses
can be created and the resultant effects probed (i.e. , the
pump-probe duty cycle). The latest laboratory tools indi-

cate a conservative duty cycle of ((1 sec allowing for
many iterations to be performed on a comfortable labora-
tory time scale. The remainder of this Letter will simu-

late this methodology using a genetic algorithm (GA)
[41, although other methods might also be employed. To
some degree, the ability of current control methodology
[I] to successfully design laser pulses for particular appli-
cations also provides evidence for the ability to teach
lasers to manipulate molecules.

Genetic algorithms are global optimization methods
based on several metaphors from biological evolution.
The first is the concept of a breeding population in which

individuals who are more "fit" in some measurable sense

will have a higher chance of producing offspring and

passing their genetic information onto succeeding genera-
tions. The second is the concept of crossover in which a
child's genetic material is a mixture of his parents. The
third concept is that of mutation, meaning that genetic
material is occasionally corrupted, leading to individuals

who may or may not be more fit than they would have

been otherwise, but always maintaining a certain level of
genetic diversity in the population.

The apparatus we model needs to consist of a sample of
the molecules of interest, a laser whose pulse sequence is

supplied by a computer and a measurement device that
feeds final population distributions or other observables

back to the controlling computer. The genetic algorithm

code runs on the controlling computer, supplying pulse

sequences to the laser and receiving fitness values (some

observable function of the molecular state) from the mea-

surement device. Over several generations, the system as

a whole wi11 seek to optimize the fields.
The genetic a1gorithm is implemented as follows. An
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individual (i.e., a single pulse sequence) is coded for by a
"gene" which is a bit string of length Ng, „, that can be
uniquely decoded to give the pulse sequence. A fitness
function is defined that can discriminate between indivi-
duals. To drive molecules into state j this might be

Zj (6i 1 pi. ), where pi is the corresponding population
of state j. Control over other observable properties of the
molecule could also be formulated. An initial population
of individuals (N~~) is formed by choosing N~„bit
strings, often initially at random, and evaluating each
individual's fitness. Children of these generation-1
parents are formed as follows. All the parents are ranked

by fitness and the highest fitness individuals are placed
directly into generation 2 with no change. From the
remaining parents, pairs of individuals are chosen and
their genes are crossed over to form genes of the remain-
ing generation-2 individuals. The crossover is eA'ected by
taking some subset of the bits from parent 1 and the com-
plementary set of bits from parent 2 and combining them
to form the gene of child 1. The remaining bits from the
two parents are combined to form the gene of child 2.
Additionally, during replication there is a small probabili-
ty of a bit flip or mutation in a gene. This serves primari-
ly to prevent premature convergence in which a single
very fit individual takes over the entire population. To
bound the magnitude of the effect of mutations, the
binary genes are usually gray coded. (A gray-coded
binary number has the property that changing any bit be-
tween 1 and 0 changes the magnitude of the number by
l.) An interesting point about mutation is that it causes
a GA to degenerate to a Metropolis algorithm in the situ-
ation that crossover is ineAective. The lowest fitness indi-
viduals in each generation may be discarded and replaced
by children of more fit individuals. Many variants of the
basic algorithm exist in the literature, but the basic model
outlined here is the one we have used.

The experiment described above is designed to be exe-
cuted with actual laboratory pump and observe-probe
measurements. At this stage, a simulation of the algo-
rithm could be carried out for virtually any molecular
system capable of being modeled on the computer. For
simplicity and ease of computation, here we show the re-
sults of a simulation where we design a field to derive a
rigid diatomic molecule into a particular rotational state.
The specific shape of the field we calculate is not as im-
portant as the recognition that the code calculating the
time evolution of the molecules could be replaced with an
actual experimental apparatus and the genetic algorithm
would help the apparatus to find an optimal controlling
field in exactly the same way it teaches our model code.
The molecule we consider is KC1 which we assume starts
in the ground state. The target state we aim for is j=3,
m =0 although the method works equally well for other
final states. In the model code, we use states j=0 to 5.
The laser is assumed to be linearly polarized in the z
direction so only m =0 states are sampled. The field is
referred to as a "laser" here, although it actually operates
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in the microwave regime. In practice, currently available
optical pulse shaping techniques [5] suggest that a Ra-
man excitation experiment coupled to a learning algo-
rithm might be practical for execution.

In any real problem the spectrum of the test molecule
would surely be obtained to identify the appropriate re-
gions (i.e., to find a filter) for the learning algorithm to
operate in. Such a simulation will be considered below,
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FIG. 2 ~ The frequency spectrum for the optimal field with
the gene described in Fig. I. The arrows indicate the positions
of the resonant transitions from j=0 to I, I to 2, and 2 to 3.
The lack of discriminating genetic pressure away from the re-
gion of spectral absorption allows for a congested, broad spec-
trurn.
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FIG. 1. The cost function vs GA generation for a case where
no bias or filter is used to guide the determination of the op-
timal field. The cost is Pl (b;;—pi)2, where j=3 is the target
state and p,. is the corresponding population of state j. The top
curve gives the average value for the population and the bottom
curve gives the value for the best individual in each generation.
The gene specified the field amplitude at a series of 128 discrete
times over I nsec.
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FIG. 3. Same as Fig. 1 except that the gene specified the real
and imaginary parts of the spectrum. The raw gene was then
passed through a filter (as described in the text) before being
Fourier transformed to provide the time sequence.
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FIG, 4. The optimal field (in kV/cm) for driving the transi-
tion from j =0 to j =3 for the gene described in Fig. 3.

but first it is useful to show the power of the algorithm to
teach the laser even when no spectral information is in-

troduced. In the first example, the GA gene is a sequence
of 128 points in the time series for the electric field over 1

nsec. The population contained 50 individuals with each
initial gene consisting of 128 amplitudes chosen from a
random uniform distribution in the range 0 to 1 and then
scaled to a maximum of 5 kV/cm. All other parameters
(mutation rates, crossover rates, etc.) were the defaults
provided by GENESIS [6l, the GA implementation we use.
The GA was then run with the resulting cost as a func-
tion of generation number shown in Fig. 1. This ex-
ponential decrease in cost is typical of other GA applica-
tions. The algorithm performed very well with the best
members of the population yielding & 99.9% occupation
in state j=3. The average population also performed
well. The best field is very noisy as is indicated by its

spectrum, shown in Fig. 2. It is not surprising that the
spectrum is highly congested as this experiment contained
no filtering, no fluence penalty, or any other genetic pres-
sure to have spectral structure except where it is actually
absorbed by the molecule. There are strong peaks near
the resonant frequences (shown by the arrows) but there
are equally strong peaks oA' resonance. This illustrates
the power of the algorithm to recognize a small but
significant control advantage in one of the initial random
family members and then amplify this preference through
successive generations to yield excellent results. Optimal
control was literally lifted out of the noise.

I n a second implementation, the GA gene was taken as
a spectrum consisting of the real and imaginary parts of
the field amplitude at a series of frequencies. A total of
200 amplitudes are uniformly spaced over the frequency
range from 6 to 24 GHz (the KCl fundamental frequency
vo is 6.97 GHz). Each of the amplitudes can range from
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FIG. 5. The frequency spectrum for the field in Fig. 4. This
figure should be contrasted with Fig. 2 where no filtering was
imposed.

0 to 1 in magnitude. Because prior spectral knowledge is
available, the raw spectrum provided by the GA is then
passed through a filter consisting of Gaussians of width
0.5 GHz centered on vo, 2vo, and 3vo which are the tran-
sition frequencies needed to carry the system up the
ladder from j =0 to j=3. The optimal field is essentially
a repeating sequence of pulses with decreasing amplitude.
The spectrum is then Fourier transformed and scaled to a
maximum of 5 kV/cm to provide the actual pulse se-
quence. The pulses last a total of 1 nsec. The initial pop-
ulation of raw spectra was totally random; i.e., each spec-
trum consists of white noise. This insures that al) fre-
quencies that might be needed later on exist initially. Of
course, the spectra are biased by the Gaussian filter.
During the simulation, the GA essentially learns which
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frequencies are needed and it discards the rest. The pop-
ulation size was 50. In Fig. 3, we show the cost for the
population of the target state j=3 for the best individual
in a generation and the average population cost versus
generation. In Fig. 4, we show the final best field that
transfers better than 99% of the population from j=0 to
j=3. Figure 5 shows the spectrum corresponding to the
field in Fig. 4. A total of about 30 generations was need-
ed to reach this level of optimization. Some of the fine
structure in Fig. 5 could possibly also be eliminated with
little penalty for the target state by the introduction of
additional constraints on the field. It is obvious from Fig.
4 that this field is completely nonintuitive which is one of
the powers of learning methods such as genetic algo-
rithms. They are able to intelligently search parameter
space relatively unfettered by the limits of human intui-
tion.

In conclusion, we have demonstrated that an adaptive
learning procedure can teach a laser to selectively excite
chosen states of a molecule. Constraints on the form or
amplitude of the driving field can readily be included in
the learning algorithm in accord with laboratory capabili-
ties. Comparison of Figs. 2 and 5 indicates that the in-
troduction of intelligent physical bias in the control field
can yield forms more readily generated in the laboratory.
Clearly, to implement this procedure experimentally, we
must have available the necessary laser pulse tools. This
is an evolving technology which should already be cap-
able of being adapted to the learning technique for some

current applications.
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