
VOLUME 68, NUMBER 2 P H YSICAL R EVI E%' LETTERS 13 JANUARY 1992

Intermittency in the Multifragmentation of Hot Nuclei' ?
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The statistical decay of an equilibrated hot nucleus is modeled by sampling the microcanonical phase
space for nuclear fragmentation. It is shown to reproduce the measured fluctuations and correlations
(intermittency) in data for 1 GeV/nucleon '79Au on emulsion. Within our model multifragmentation is

linked to the nuclear liquid-to-gas phase transition. The model is used to realistically study the condi-
tions leading to the phenomenon of intermittency in critical heavy-ion reactions.
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Intermittency is a concept that was originally devel-

oped in the study of the fluctuations that occur in tur-
bulent flow [1-4]. It corresponds to the existence of large
nonstatistical fluctuations that possess self-similarity at
all scales.

Bialas and Peschanski [5,6] have proposed to extend
this concept to the study of dynamical fluctuations in the

rapidity (ri) distributions of particles from high-multi-

plicity events produced in high-energy collisions. They
suggested the calculation of the factorial moments

(P]n(ri„, )[n(ri„, ) —1]. [n(ri, ) i +1])—
(N(N —1) (N —i+1))

of the rapidity distribution n(rl) of N particles over M
bins of width b'q. Under certain conditions (e.g. , second-

order phase transition, self-similar cascading mechanism,

see below) one expects the moments F; to 'follow a power

law as a function of the size (resolution) briof the rapidi-

ty bins:

d; =f;/(i 1) . — (3)

For further literature on the relation of intermittency to
chaos, scaling, and fractal geometry see also [11,12] and
references therein. For an illuminating review on the
mathematics of (multi)fractal geometry, critical scaling,
and thermodynamics, see [13,14].

The interesting and novel point is that diA'erent pro-
cesses (cascading or phase transitions of second order)
seem to give diferent dependences of d; on i [15]:

d; =const (4a)

(for monofractal, second-order phase transitions [9]),and

The rapidity distribution n(ri) shows a characteristic
fluctuating "fingering" over a broad range of resolutions.
The set of g values which contribute to the ith moment
(the support) is a typical multifractal. The reduction of
the fractal dimension from 1, corresponding to the finger-

ing, is called the anomalous fractal dimension d;. It is re-

lated to the intermittency exponent by [7,9,10]

F;~(Sq) '. (2) (4b)

That is, the moments scale or show self-similarity at vari-

ous resolutions, F;(aBri) =a 'F;(Bri). This behavior is

called intermittency; f; is the intermittency exponent. It
is intimately linked to the multifractal properties of the
underlying physical process and/or to the power laws in

its critical behavior (see below). Using normal moments
instead of the factorial ones would of course lead to a
similar scaling. It is believed, however, that the factorial
moments considerably suppress statistical fluctuations
due to the finite multiplicity per event [5,6]; see, however,
[7]. In this Letter we use the factorial moments.

Using a simple mathematical model, the a model, Bia-
las and Peschanski were able to demonstrate that self-
similar cascading processes are a possible source for in-

termittency [6,8]. In a further development it was shown

[7,9] that the fluctuations associated with critical phe-
nomena in a two-dimensional Ising model lead to an in-

termittent pattern of the cluster size distribution. By re-
normalization techniques (self-similarity) it was possible
to evaluate the intermittency exponents f; for the fluctua-
tions at the critical point.
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(for multifractal, cascading, a model [61). Thus, an in-

termittency analysis of the fluctuations and correlations
may carry important information on the dynamics of the
decaying system.

More recently, Ploszajczak and Tucholski [11,16] sug-
gested looking for intermittent behavior in the fragment
size distributions in nuclear multifragmentation at inter-
mediate energies. They analyzed the factorial moments
of the charge distributions from the fragmentation of
79Au nuclei on emulsion at 1 GeV/nucleon [17], and

were able to see evidence for intermittent behavior in the
nuclear fragmentation data.

Up to now we are aware of only this one limited set of
415 events that is suitable for the study of intermittency
in nuclear multifragmentation. As the physical condi-
tions leading to intermittency are not yet well understood,
it is essential to have suSciently realistic models which

permit study of the system under many conditions.
Moreover, a theoretical model allows one to generate a
large enough number of events to get suScient statistics.

In analogy to the Ising model, a possible source for in-
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termittent behavior in the nuclear fragmentation case
might be the critical region associated with the liquid-gas
phase transition in hot nuclei [18-22]. In some recent
work [23,24] this phase transition has been investigated
using the Metropolis sampling of the microcanonical mu1-

tifragmentation decay of equilibrated hot nuclei devel-

oped by Gross and co-workers [25-27]. Two critical re-

gions of the fragmenting system were found. One is re-
lated to the liquid-gas transition in hot nuclear matter,
and the other could be identified with a sudden and mac-
roscopic opening of hot fission decay channels.

In Ref. [16] the authors expressed serious doubts that
the liquid-gas phase transition within a thermodynamical
model could be the source of the intermittent behavior
seen in the experimental data. Therefore it is important
to see whether microcanonical multifragmentation ex-
plains the observations. As suggested in Ref. [161, one
divides the range AZ of the distribution of fragment
charges Z into M bins each of size bZ =AZ/M, and then
calculates the scaled factorial moments [5,6,281

(5)

n„, is the multiplicity, or number of particles or frag-
ments, in the mth bin, (m —1)8Z &Z &mb'Z. The an-
gular brackets denote the average over many events.
Often F; as defined above is called the horizontal aver-
aged factorial moment [29] of the distribution of the
number of fragments versus charge bins BZ. It should
not be confused with the moments g (Z )' nf the
charge distribution, which were used by Campi [30,31]
and also by us [23,24].

We have calculated the scaled factorial moments for
the microcanonical fragmentation of gold nuclei with an
excitation energy spectrum that falls oA' exponentially
and becomes uniform at energies E* &1.2 GeV. This
distribution is derived [32] from the experimental results
of Ref. [17]. Some results for the moments are shown in

Fig. 1. In analogy to Ref. [16], the events contributing to
these moments are selected from events generated by our
Metropolis sampling by the constraint of having at least
three intermediate mass fragments (IMF's) with charge
Z~ 3.

In order to reduce possible correlations coming from
the Metropolis sampling method, we accumulated every
5075th event to get fi.~e equivalent samples of 412 events
each, as compared to the experimental sample of 41S
events. We found that our results varied only slightly (on
the order of less than 5%) from sample to sample, and
that they were well represented by the combination of all
five sets. Our discussion then is based on this combined
sample, though the results would not change if we used
any one of the smaller samples. The errors shown in the
plots of the experimental data are as given in [16],which
we approximated by assuning an error of 2- S.S% in the
moments.

In Figs. 1, 3, and 4 we plot ln(F;) versus the resolution

(bin size), —ln(bZ). The open circles connected by a

dashed line are the moments calculated from our sample

data set of 2059 events. They fall somewhat below the

experimental points. This is due at least in part to the
fact that our model produces more fragments per event

on average than the experimental data show. This may
have a simple explanation. In the experiment one records

only those events in which the sum of the detected frag-
ment charges is exactly 79. As there is a greater proba-
bility to miss some light fragments in higher-multiplicity
events, this biases the experiment. We simulated this

bias by rerunning our sample, and allowing for the possi-

bility that a light fragment (Z - 26) might not be
recorded. We then rejected all events with total charge
less than 79, as in the experiment. We found that even

an inefficiency as small as 2.75% for protons, linearly de-

creasing with charge, reduces the average multiplicity
and considerably enhances the momenrs without chang
ing the slopes much. This can be seen quite clearly in the

figures, in which the open diamonds (connected by a solid

line) give our results after adjusting for the bias. In a
subsequent paper [33] we will investigate this further.

Both with and without the bias, the moments show a
pronounced linear rise with decreasing bin size bZ. This
is just the "intermittency" observed in the experiment
[16]. In our analysis we have excluded the point BZ = I,
to conform with the analysis in Ref. [16]. Note that in

the data the factorial moments at BZ =1 are considerably
larger than at the other bin sizes. This is presumably due
to the fact that BZ =1 is the physical limit of the resolu-
tion, and thus marks the breakdown of scaling versus bZ.

Following Ploszajczak, Tucholski, and Bozek [34] the
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FIG. I. The dependence of the factorial moment ln(F;) of

order i on the bin size —ln(b'Z), for the microcanonical mul-
tifragmentation of hot '~9Au nuclei. Results are shown for mo-
ments of orders 2-5, using those events containing at least three
IMF's. For the experiment {solid squares) this filter selected
144 of 415 events, for the unbiased theory (open circles con-
nected by dashed lines), 1114of 20S9 events, and for the theory
after allowing for experimental bias (open diamonds connected
by solid lines), 365 of 1066 events. Errors bars are shown for
the experimental data; corresponding errors exist but are not
shcwn for the theory.
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FIG. 2. In(F;) vs In(F2) for the same data sets as in Fig. I.

Again error bars are given only for the experimental data but
exist also for the theory.

intermittency can even be made more evident by plotting
ln(F;) vs ln(F2). In Fig. 2 we do this for the same events
shown in Fig. 1, and we see that the model data scale
with the same slope as the experimental data. It is quite
interesting that here the point HZ=1 also follows the
general systematics. Apparently, the limiting behavior in

6Z does not affect the ln(F;) vs ln(F2) scaling. In a sub-

sequent detailed publication [33] we show that this kind

of scaling may follow from very general and simple
features of the fragmentation process which are not lim

ited to nuclear fragmentation. In fact a nearly identical
scaling with very similar slopes was recently found in

high-energy hadron production processes [35]. Note
again that simulating the experimental bias brings the ex-
periment and theory into much better agreement.

A critical comment should be made here. Because of
the finite size of nuclei, statistical, so-called nondynami-

cal, fluctuations cannot be avoided [7], even by the use of
factorial moments. Therefore, not all of the linear depen-
dence of ln(F;) on In(BZ) is linked to intermittency in a
corresponding infinite system. As the two types of fluc-

tuations are inseparable one should not make a distinc-
tion between them.

Figure 3 displays the scaled factorial moments F; for
events satisfying the criterion of having at least four
IMF's. Figure 4 gives the moments F; with no filter, i.e.,
without any constraint. Apparently, the moments F; are
smaller and the slopes f; (dimensions d;) are larger when

events with less than three IMF's are filtered out than
when all events are used (Fig. 4).

Figure 5 shows the anomalous fractal dimension d;
=f;/(i —I) for the filtered data. They are calculated
from linear regressions to the data of Figs. I and 3 (ex-
cluding the point SZ= 1). The errors in the dimensions
are obtained by adding the variance in the slope due to
the individual errors in the ln(F;), and the variance due
to deviations from linearity of the mean values of ln(F;).
Again we see that adjusting for bias brings the theory

into much better agreement with the experiment (com-
pare the solid and dashed lines). Although the adjusted
results closely follow the experimental data, the behavior
of the dimension is not clearly either that of a cascade
process (linear with i) or a phase transition (constant
with i) in an infinite system. The fact that our model
yields results not clearly consistent with a second-order
phase transition in infinite systems may be due to finite-
size effects or the influence of the long-range Coulomb
force [23,24,27], and it might also be that a filter using
the number of IMF's picks out events in a broader region
than that covered by the second-order phase transition.

To summarize, we have shown that the scaled factorial
moments calculated from data on the fragmentation of
gold nuclei can be reproduced using a microcanonical
model of the thermal breakup of the nucleus. Our model
describes the height and slopes of the moments, and
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FIG. 4. The same as Figs. l and 3, but for all events without

any filter.
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FIG. 3. The same as in Fig. l, but for events with at least
four IMF's. The numbers of events which pass this filter are 80
for the experiment, 905 for the unbiased theory, and 272 for the
theory with biasing.
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reproduces the ln(F;) vs ]n(Fz) scaling. The moments
may show evidence for an experimental bias towards
events of lower multiplicity.
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