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Naked Singularities: Gravitationally Collapsing Configurations of Dust
or Radiation in Spherical Symmetry, a Unified Treatment
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It is sho~n that the naked singular solutions that form in the gravitational spherical collapse of radia-
tion are of the same nature as the ones which form in the collapse of dust matter. The stability, the

strength, and other features of the singularities and Cauchy horizons are analyzed. This has implica-
tions in a possible formulation of the cosmic censorship hypothesis.
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In the usual picture for the gravitational collapse of a
spherical star, an event horizon appears first, followed by
the formation of a spacetime singularity. In broad terms,
the cosmic censorship hypothesis states that spacetime
singularities are enclosed within an event horizon and
cannot be seen by external observers, thus forbidding the
existence of naked singularities [l]. If cosmic censorship
fails to be valid, then unknown data may emerge from the
singularity. In this case one cannot predict the future of
the singularity and some form of determinism is lost even

within classical general relativity. A precise mathemati-
cal formulation of cosmic censorship is still lacking, and

there is a growing number of counterexamples to the
above-mentioned version.

Naked singularities can form in the collapse of dust,
soft matter, and null radiation [2]. These models are all

spherically symmetric and such a high degree of symme-

try could be used to invalidate on physical grounds the
formation of those singularities. However, more recently,
naked singularities have also appeared in the collapse of
prolate configurations of collisionless particles [3]. This
in turn shows that the naked singular behavior is not an

artifact of special symmetries. Moreover, one can contin-
ue to consider spherical symmetry as representing a fair
picture of what might be the actual physical process of a
certain class of gravitational collapse. This is in the same
spirit as what happened after the singularity theorem of
Penrose [4] where one could neglect small deviations and
consider spherical symmetry as a reasonable assumption.

Such naked singular solutions can be of two types, shell
crossing and shell focusing, the latter being the more fun-

damental since it involves a curvature singularity where
some curvature scalars diverge at some stage in the center
of the collapsing matter. These shell-focusing singulari-
ties are not counterexamples to the hoop conjecture of
Thorne or the event-horizon conjecture of Israel, as a
spherical event horizon will always form afterwards, hid-

ing the central singularity [5].
There are only two exact solutions of Einstein field

equations which have been used to generate solutions
with shell-focusing singularities. They are the Vaidya
and the Tolman-Bondi metrics. The Vaidya metric de-
scribes the gravitational field associated with the eikonal
approximation of an isotropic flow of unpolarized radia-

tion, or, in other words, it represents a null fluid. It is

usually employed in modeling the external field of radiat-
ing stars and evaporating black holes [6]. On the other
hand, the Tolman-Bondi metric gives the gravitational
field associated with dust matter and is frequently applied
either in cosmological models or in describing the collapse
of a star into a black hole [7]. Tolman-Bondi spacetimes
embody the Schwarzschild solution, the Friedman uni-

verses, and the Oppenheimer-Snyder collapse, as well as
inhomogeneous expansions and collapses.

At first sight these two metrics are completely differ-
ent. Do the naked singularities that form in the collapse
of null radiation and in the collapse of dust bear any rela-
tion with each other? Are there any features common to
both solutions? And if this is the case what are the impli-
cations for cosmic censorship? Prior studies within the
Tolman-Bondi class only focused on the so-called margin-
ally bound and time-symmetric (bound) collapses. How-
ever, if some relation is to be found between the Vaidya
and the Tolman-Bondi metrics one has to analyze the un-

bound case [8].
I find here that the naked singularities which appear in

Vaidya and Tolman-Bondi spacetimes are of the same
nature. In fact it is shown that various important
features such as the degree of inhomogeneity of the col-
lapse necessary to produce a naked singularity, the Cau-
chy horizon equation, the apparent horizon equation, the
strength of the singularity, and the stability of the space-
time have a mutual correspondence in both metrics; i.e., I
unify both metrics. For cosmic censorship, this result im-

plies that if the shell-focusing singularities arising from
the collapse of a null fluid are not artifacts of some
(eikonal) approximation then the shell-focusing singulari-
ties arising from the collapse of dust are also not artifacts
(and vice versa). Conversely, if the naked singularities
are artifacts in one of them so are they in the other.

To set up the problem one describes the null radiation
by the four-velocity null vector field k' and the density
p, . The metric for spherica11y symmetric co11apse of im-
ploding radiation is then the Vaidya metric,

ds = — 1—2m(v)
dv +2dvdr+r (d8 +sin Bdy ),r
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where ~ is an advanced time and k, —:8 ~. The function
m(i ) gives the effective gravitational mass. To avoid
shell crossing one requires that m(v) be a nondecreasing
function of t. . The energy-momentum tensor associated
wltll Eq. (1) is

drn
T,,g= — k kI, ,4zr' d~

which makes obvious the identification dm/di =4trr p,
-'

Bust matter is described by the timelike four-velocity
vector field u' of the particles and by the density p„,. The
solution for spherical symmetric dust is in comoving coor-
dinates given by the Tolman-Bondi metric,

ds -' = dt -—+ e -'"' "dR + r -(R, t ) (dO + sin Odili -) .

Here R and I are, respectively, the comoving radial coor-
dinate and the proper time of each concentric shell and
u„=&,t The .energy-momentum tensor for dust is T„&

@tent Ll g 0/p and Einstein field equations Ci,&
=8 n T„p yield

e"= [1/dl + 2E (R) ]r',

—, i =E(R)+m(R)/r,

where primes and dots denote differentiation with respect
to R and t, respectively. The function m(R) is the
effective gravitational mass within R related to p„, (R, t)
by m'=4zr r"p„,. One can always put m =R. The other
function of integration E(R) is the binding energy per
unit mass of shell R and in order that metric (2) be non-

singular one takes —
& & E & ~. Bound objects are lim-

ited by —-' & E &0 while unbound objects have F &0,
E=0 being the marginally bound case. One is interested
in the limit E- — ~. When E) 0 the solution of (4) for
imploding matter is [9]

rn . . (2E) -'t'
r =—sinh 'g, sinh2g —2tl = -[t, (R) —tl,

E m

where rt is an auxiliary parameter and t, (R) is another.
function of integration which defines the time that the
shell with comoving coordinate R collapses to the singu-

larity. In order to avoid shell crossing it is necessary to
impose t,

' » 0 and E' ~ 0. According to Eq. (5) the evo-

lution of r(R, t) in the E--. ~ regime satisfies

r =(2E)"(t, —t)+ -ln (t, —t) +O(F . -)m 2(2E) t —2

2F, m

to the leading orders of E.
One now restricts the problem to self-similar collapses

and links the most important features that are relevant to
the appearance of naked singularities in the two models.
The assumption of self-similarity is sometimes used to
simplify the equations. Although precise geometric cri-
teria for the development of naked strong singularities

have been given only in the case of self-similar space
times, some other examples not involving self-similarity
also generate strong curvature singularities [10]. There-
fore the assumption of self-similarity is not crucial. In
the end the self-similar constraint is dropped and it is
shown that the relation between these features is a more
general 1'act. Self-similarity implies m(i ) = v/p and
t, (m). =Bm, where in this latter case the coordinate 1'ree-

dom to scale R=m was used. The constants p and 8 give
the measure of the inhomogeneity of the collapse. I'or
large p and 8 one has highly inhomogeneous collapses
~here the outer shells collapse much later than the cen-
tral ones.

In the Vaidya model a singularity first appears, sig-
naled by the blowing up of the Kretschmann scalar, at
(i,r) =(0,0). A future Cauchy horizon, i.e., a naked
singularity, appears [11]if p» p, . =16, where a subscript
e from here onwards denotes the critical value. The Cau-
chy horizon is the first outgoing null geodesic coming out
of' the singularity. When p =p, the equation for the
Cauchy horizon is i. q. H =4r and for the apparent horizon
is t ~H =Sr. On the other hand, in the Tolman-Bondi
metric a singularity forms at coordinates (t, m) =(0,0)
and a Cauchy horizon appears when 8» 8, =1642E
For 8 =8, the Cauchy horizon evolves as

(
m 1

1642E
1+ +o(E ')

8F.

and the apparent horizon as

m 1

16m 2E
- 1+ -+o(E -') .

leE

1 Bm/t

(2E) 't'8 Bm/t —
1

+o(E -')

In both metrics the apparent horizon always appears
after the Cauchy horizon. The global nakedness of the
singularity can be seen by making a junction onto the
Schwarzschild spacetime.

The strength of the singularity is an important issue.
There have been attempts to relate it to the stability
problem. A singularity is said to be strong if an
infinitesimal test body is crushed to zero proper volume as
it approaches the singularity, i.e., if the body is destroyed
at the singularity. This is associated with the so-called
strong limiting focusing condition which states that the
singularity is strong if y=lim~ .Ok-'G„qk'k "&0, ~here k"
is the null geodesic along the Cauchy horizon
parametrized by )i. [12]. ln the Vaidya self-similar col-
lapse one has y=g/p. Hence for p =p, one has yv = —,

'
.

In the Tolman-Bondi metric the measure of the strength
is it1=2C/(I+V)', where now
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For B=B„one has C= I +0(E '); thus 9tTB

+O(E ').
Another important point concerns the stability of the

solutions that develop shell-focusing singularities with the

formation of the associated Cauchy horizon. This is not a
settled issue but there are some grounds to accept that in

self-similar collapses the Cauchy horizon is stable at least

to blueshift perturbations. The stability analysis against

the blueshift criterion is motivated by the Kerr-Newman

family which develops such a type of instability. If one

injects massless fields along the future Cauchy horizon in

the high-frequency approximation one has that the fre-

quency shift of the radiation is given by v„/v, =(u, k')„/
(u, k')„, where v, and v„are the observed and emitted

frequency, respectively, and u' is the four-velocity of the

infalling matter at observation or emission [13]. In the

Vaidya metric one may take, for p =p„, u'=(0, —1,0,0)
and k'=(I/2r)(4, 1,0,0), so that v„/v„=r, /r„=t, /v„In.

the Tolman-Bondi collapse if one takes

0' = (1,0,0,0), k' = 1, ,0,0
1 1

(I+C)t' '
I642E

' '

i

one obtains v, /v„=(t„/t„) =(R,/R„), with C as given
above. Since v„/v, . ~ I the future Cauchy horizons of
both metrics are stable against the blueshift instability
(although other modes can set in).

These results show that the scalars which appear in

both metrics, namely, p„,B„/42E and titv, titTa, have the
same value and that the stability criterion is satisfied by
both metrics. Since scalars are the quantities with an in-

variant meaning, this indicates that the Vaidya metric
and the Tolman-Bondi metric in the E ~ limit repre-
sent the same collapse.

Indeed, metric (2) uses comoving R rather than r as
its radial coordinate so it is advisable to change to r.
Now dr =r'dR+r'dt and hence (r'dR) =dr —2r'drdt
+r'2dt2. Thus using Eqs. (3) and (6) and taking only
the leading terms in E yields for the metric (2) the fol-
lowing:

2 2m dt 2

(2E) i (I,. —I) 2E (2E) '

ddrdt+ +r (d9 +sin OdII ). (7)
2E (2E) t (t„—t ) 2E

Defining then the new coordinate t' —= I/&2E +&/2E
=t„(R)/j'2E and taking the limit E ' —0 in Eq. (7)
gives the ~v'aidya metric (I). Here the fact was used that
R is a (nondecreasing) function of m, and hence

v =t, (m)/v2E, which in turn can be inverted to give

m(v), the mass as a nondecreasing function of v Notice.
that the Tolman-Bondi representation uses the time func-

tion t„(m), which is interpreted as the time that the shell

with mass m collapses to the center, while the Vaidya
representation prefers to use the mass function m (v),
which has the meaning of the mass accreted at time v. In

the E ~ limit the energy density of the matter in the
Tolman-Bondi metric and the energy density of the radia-
tion in the Vaidya metric are related by p, =2Ep

Thus the Vaidya metric belongs to the Tolman-Bondi
family. While the former provides only one function
m (t ), the latter yields the two functions E(R) and t, (R).
The Tolman-Bondi metric is far-reaching enough to give
continuously bound, marginally bound, and unbound col-
lapses. The most unbound case yields the Vaidya metric.
So one expects that major features which might arise in

one of the metrics will also appear in the other. One ex-
ample is the result that the strength in the Vaidya metric
depends on the direction from which the geodesics enter
the singularity. Within this perspective, this is a re-
discovery of the same directional property found in the
Friedman models [14]. Null fluids are, in principle,
easier to treat than matter fields. A null fluid is the
eikonal approximation of a massless scalar field. Thus if
one shows that the naked singularities arising in the
Vaidya metric can be derived from more fundamental

t
(massless) fields, then the naked singularities which form

in the To]man-Bondi collapse may also be derived from

more fundamental (massive) fields. The same types of
relations and conclusions hold for charged radiation and

charged dust matter.
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