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Internal Dynamics of DNA Probed by Transient Electric Birefringence
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Experiments on the field-free transient electric birefringence decay of dilute solutions of monodisperse
DNA fragments whose length L is much larger than the persistence length Lp are reported. They reveal
that the highly nonexponential decay is independent of L. We present a simple theoretical model which
includes the internal rigidity of the polymer, explains the qualitative results of the measurements, and
describes quantitatively the dynamics of long semiflexible polymers such as DNA, providing an accurate
determination of the persistence length.
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The static and dynamic properties of a particular
semiflexible polymer, DNA, are of fundamental impor-
tance in biology. The stiffness of DNA determines both
its persistence length and its dynamic properties, as well

as the strain energy stored in highly distorted DNA. The
latter is of direct biological interest in areas ranging from
the highly condensed nature of the DNA in eukaroyotic
cells [1] and the enthalpic strain energy in DNA-protein
complexes [2], to the conformation of supercoiled circular
DNA [3]. Modern restriction enzyme techniques [4],
which have revolutionized the study of nucleic acids, can
also be used to produce absolutely monodisperse polymer
solutions of DNA. These yield a beautiful system for
studying the properties of semiflexible polymers. We re-
port here experimental and theoretical work which
demonstrates how the response of a polymer to transient
electric fields can be used to determine the elastic con-
stants of the chain and to reveal information about its dy-
namics.

The important parameters that characterize the static
properties of a polymer are its total length L, proportional
to the number of monomers [here, DNA base pairs (bp)],
the persistence length Lp, which measures the decay of
correlations of the local tangents along the chain, and its
effective hard-core radius which gives rise to effects of
self-avoidance. While extensive previous experimental
[5-7] and theoretical [8-10] work has focused on the dy-
namics of short chains, our analysis focuses on the inter-
nal dynamics of DNA fragments for which L/Lv)) l.
We have measured the transient electric birefringence
(TEB) decay of monodisperse DNA of varying lengths L
in dilute solutions (i.e., with concentration less than that
for chain overlap). The experimental quantity of interest
is the field-free decay $(t;T) of induced birefringence
following application of an electric pulse of duration T
and amplitude E„, which partially aligns the DNA mole-
cules. All the data [11] were obtained in the Kerr re-

gime, where the signal amplitude is proportional to E;„.
Figure 1 shows the field-free TEB decay from dilute

solutions [12] (0.01 mM bp) of E coli DNA fragment. s

of 22000 bp, for varying pulse widths in the range
2» T ~ 60 ps. The time resolution of the experimental
system was 50 ns, as determined by the rise and fall times
of the Cober pulse generator. The data reveal that the
decay of the birefringence for long fragments is strongly
nonexponential (as seen before in polydisperse solutions
of polystyrene sulfonate [13] and in "living polymers"
[14]). A remarkable saturation eA'ect is also seen (Fig.
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FIG. 1. Transient electric birefringence decay S(t;T) from a

sample containing restriction enzyme fragments of length
22000 base pairs. Decay curves were obtained with an aligning
field of magnitude 1500 V/cm of duration 2( T ~ 60 ps, in-

creasing to the right. Inset: The characteristic time of the vari-

ous decays determined directly from integration of the data.
Power-law fit shown in the inset yields an exponent of
ill =0.46 ~ 0.06.
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2) in which the form of the decay (in the range of t ac-
cessible) becomes independent of L for L sufficiently
large. The nonexponential form of the decay implies the
existence of a distribution of relaxation times, which in

turn yields strong pulse-width dependence to the decay.
Only those components of the distribution with relaxation
time r & T respond appreciably to the aligning pulse and
thus contribute to the observed field-free decay. The re-
laxation associated with the skortest fragments (with
L (L„) is nearly exponential, indicative of an extremely
narrow distribution of relaxation times.

In the Kerr regime, if the electric field polarizes the
molecule sufficiently fast, the measured signal will depend
only on F„,(t) For .a square pulse, linear response then
implies (for t )0)

S(t;T) =~ dr G(r)r(1 —e ')e ' 'F.„, , (I)
where G(r =I/s) is the Laplace transform (in s) of the
linear response G(t) to a b-function electric field pulse.
We have explicitly verified that the data are in this linear
regime by comparing the signals from independent pairs
of pulses to those from a single longer pulse.

Since inverse Laplace transformation of data tends to
be fraught with numerical instabilities, it is useful to ex-
tract from the measured signal a quantity which directly
yields information on the large rbehav-ior of G(r )
which, as we shall see, is determined by the long-
wavelength dynamics of the polymer. We thus define a
characteristic time, r(T) =f0 dt S(t;T)/S(0;T), which
is plotted in the inset of Fig. 1. For large T, r(T) ap-
pears to exhibit a power-law form r (T)—Tv with an ex-
ponent @=0.46 ~0.06. In this paper we propose and an-
alyze a simple model for the polymer dynamics which re-
sults in G(r)-r ~ with p= T for a wide range of r in

long chains. This is reasonably consistent with iI'i=3
—y=2.54+ 0.06 extracted from the data, especially
considering the rather limited range of T (I to 60 ps)
used for the fit.

In order to formulate a reasonable model for the poly-
mer dynamics, we must first clarify the role of self-
avoidance. In the absence of self-avoidance, the rms end
to end distance RI of a long DNA segment of contour
length L is given in terms of the persistence length L~ by
Rt. =2LL„. From a variety of physical techniques [15],
L„has been estimated to be -650 A under the present
solution conditions. To estimate roughly the effects of
self-avoidance on the equilibrium configurations of the
DNA, we consider all configurations that ~ould be per-
mitted in its absence. If the typical number of self-
intersections &n;„i) in such configurations is muck less
than I, self-avoidance will not change the allowed con-
figurations significantly. Simple considerations yield
that &n;„i) scales with the polymer chain length as
-L /Ri -L't-. If the DNA cross-sectional radius a is
small, &n);„i then has the form —a(L/L~)'t . (An esti-
mate of the numerical prefactor yields a result consider-

&rl;(q, t) rlj(q', t'))- b;, r(q)a(t t')b(q —q'). —

(We choose units of energy so that kti times the tempera-
ture is unity. ) Long-range hydrodynamic coupling be-
tween different sections of the chain caused by the
response of the solvent water molecules to motion of the
chain results in an effective nonlocal viscous drag, so that
I (q) depends on q [19]. Since the hydrodynamic radius
and hence the drag on a section of polymer of length I
scales as I' rather than I, we expect that modes with
wavelengths q —I/I will have their drag reduced by a fac-
tor of I' t'-, yielding an enhanced I (q) =)q ' at long
wavelength. The diffusion coefficient DI. of a polymer of
length L is similarly proportional to L ' rather than
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FIG. 2. Transient electric birefringence decay for 146, S053,

and 22000 bp DNA fragments. The solid line is a fit to the
data for the 22000 bp fragment using the model presented in

Eq. (5). Note that the decay for the shortest chains is essential-
ly exponential, in contrast to that of the longer fragments.

ably less than unity. ) Using the measured values of
L„-650A and a —15 A [16],we can verify that even for
the longest DNA segments we have used here (-20000
base pairs), this quantity is much less than unity. Thus
the effects of self-avoidance on the statics will be negligi-
ble. Nevertheless, even for small chain radius a, the dy-
namics will be affected by self-avoidance at least at very
long times [17].

For a semistiff thin polymer like DNA we thus have a
separation of length scales between the microscopic
length a, the persistence length L„, and the length above
which selfavoidance will be important, LsA. a « L„
«LsA. The region probed by the present data is L„«L
«LsA. Since the Auctuations in the shape of the chains
are strongly overdamped, the dynamics can be described
by a Langevin equation of the form [18]

11R(q) ~( ) bP[R] + (,) (2)
Ilt bR(q)

where R(q) =L '/2fR(x)exp(iqx)dx is the Fourier
transform of the position R(x) of a point on the chain,
and the thermal noise q has correlations
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I/L, and can be related to y within the "preaveraging ap-
proximation" [l8], DI =8) (9xL/2) ', allowing for an
experimental determination of y. This scaling of DI with
L is borne out experimentally for DNA fragments in the
range of lengths used here [20].

On scales shorter than Lp, the free energy of the poly-
mer is given by —. Lz fdx(O R/Ox ), with the constraint
)OR/Ox~ = I. At scales larger than the persistence length,
however, it is more convenient to work with an effective
free energy in terms of a coarse-grained position R(x),
which includes the effects of the entropy of short-
wavelength deformations. The dominant terms are

4
S(..T) uE2 Q q [I, n-.«&]e it.«&

v K(q)'

where K(q) =oq +xq =3[q +L„q ]/2L~ and the de
cay time of the mode of wave vector q is I/r(q)
=2I (q)K(q). From the boundary conditions OR(x)/
Ox =0 at the two ends, we have q =nn/L, w'here n ranges
over all nonzero integers in the summation in Eq. (5).

In order to understand the form of the decay function,
it is instructive to examine the behavior of our model in

the continuum limit, in which the summation over q in

Eq. (5) is replaced by an integral. There is a characteris-
tic "turn-on" time at which, for the modes that dominate
the integral, both parts of K(q) are of the same order;
this occurs at a time t~-LP /y. Second, when t is large,
for the modes that are important we can approximate
K(q) by its first term, oq . Equation (5) is then a
Gaussian integral, which yields

S-t ' ', for t » tp, T. (6)

n[I
—n~ —

~ dx

2
ORi(x)

Bx

OR (x)
Bx

4

Substituting R(q, t) obtained as in the previous para-
graph in Eq. (4), in the Kerr regime the birefringence
signal can be found to be of the form anticipated in Eq.
(I),

in which the first term is the conventional entropic term
[2I], and the second is a residual rigidity term [22]. The
last term is a contribution from the electric field, which
tries to align the polymer parallel to E, and has been as-
sumed to be local in time (as justified earlier).

The relationship between the two material parameters
o and ~ and the persistence length Lp is found by requir-
ing that correlations between the local tangents to the
chain should decay in exactly the same way as for a con-
tinuous elastic rod, for which [23] (q R(q) R( —q))
—(I+q L„) '. For this to be true, we must choose
x/o =Lp. For very large L, the leading term in the mean
square extent is 3L/rr. Accordingly, we find a=3/2Lp,
and thus K L„rr =3L~/2.

Since the electric contribution to 2 is of the same form
as the entropic term, it can be absorbed into it by making
the coeScient anisotropically time dependent. The re-
sulting Langevin dynamics of Eq. (2) constitutes a first-
order (time-dependent) linear equation for R(q): We
write Eq. (3) in terms of the Fourier components of
R(x), R(q), and substitute in Eq. (2). For a square
pulse, this can be easily integrated to find R~~(q, t) and

R&(q, t), the components of R(q) parallel and perpendic-
ular to the aligning field, the two differing because of the
field-induced anisotropy.

The birefringence signal is proportional to the differ-
ence in indices of refraction parallel and perpendicular to
the field, and apart from material properties such as po-
larizabilities is given by [18]

Finally, there is a long-time cutoff to the signal, which
arises from the fact that Eq. (5) is really a summation
over q rather than an integral. This time is set by the
condition 2f (z/L)K(z/L)t —I. This results in an ex-
ponential cutoff at tl -L ~ L„/y. Since I (q) and K(q)
are both independent of L, when we approximate the sig-
nal by an integral over q, for a given value of the pulse
width T the observed decay for t && tI is also independent
of L, up to a normalization. The long-time cutoff does,
however, depend on L.

The chain-length independence of the decay, for times
less than tI for large L, reAects the fact that the bi-
refringence signal is a nonsingular function of wave vec-
tor q as q 0. As a result, for large L, the sum in Eq.
(5) is well approximated by an integral over q from 0 to
some upper cutoff. (This is in contrast to the behavior for
any probe that is singular for small q, which would not
show the kind of length independence that we have
found. )

lf we recast the result, Eq. (5), in terms of an integral
over relaxation times as in Eq. (I ), and consider the
large-r behavior, we find from the limiting forms for

q 0 of I (q) and K(q) that r(q) —q and

q /K'(q) -qo. Thus G(r) =r 'dq/dr —r
The decay curve S(t;T) is completely specified (up to

a normalization) by the two characteristic times rp and

tI, which in turn depend on two physically important
quantities which can be determined by other experimen-
tal techniques: the persistence length Lp and the transla-
tional diffusion constant DI. The signal decay should
thus be fitted without any adjustable parameters. How-

ever, our data are not particularly sensitive to the long-
time cutoff. The best fit estimates from an analysis of
several hundred decay curves at varying pulse widths and

varying contour lengths yield a value of Lp =200+ 30
base pairs (or 680~ 100 A at 3.4 A/bp) when we use
measured values of the diffusion constant DI for different
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values of L as obtained from sedimentation studies [20].
Figure 2 shows the best fit obtained for the DNA frag-
rnent 22000 base pairs long with a pulse width T =20 ps.
The value obtained for I.„ is consistent with values re-
ported in the literature [15], again given the errors in-

volved in both the experiment and the assumptions of our
model.

In conclusion, we have demonstrated that a simple
model for the internal dynamics of relatively long DNA
molecules yields a good fit to the transient electric
birefringence decay, and provides a means to determine
the elastic constants and persistence length of such poly-
mers. Extensions to include the effects of self-avoidance
should be interesting. During preparation of this manu-
script, we received preprints on related work by Wu et al.
[14] and by B. Zimm.
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