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Study of Internal Modes of a “Living Polymer” by Transient Electric Birefringence
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We use a pulsed electric field to study transient electric birefringence in “living polymers.” The decay
of birefringence is nonexponential and depends on the pulse width of the electric field. The relaxation is
modeled in terms of the collective modes of the individual polymers with Zimm dynamics. Using this
model, we find that the living polymer behaves as a flexible chain even at very low concentrations. Two
distinct growth regimes are found for the polymer contour length L as a function of surfactant concen-
tration ¢. In the very dilute regime L increases as /¢, and levels off at higher concentrations.

PACS numbers: 87.15.He, 36.20.—r, 47.50.+d, 61.20.—p

The dynamic response of complex fluids when subject-
ed to external perturbations, such as electric and magnet-
ic fields and hydrodynamic flows, is extremely complicat-
ed, yet there are some unifying features [1,2]. For exam-
ple, these systems often have a broad distribution of re-
laxation times and show nonexponential relaxation. It is
believed that the broad distribution of time scales is re-
sponsible for a wide variety of interesting phenomena in
complex fluids, ranging from plastic flow in polymer
glasses [3] to turbulent-drag reduction in dilute polymer
solutions [4]. An understanding of the physical origins of
the anomalous relaxation is of great practical and funda-
mental interest.

A “living polymer” is a paradigm for studying dynam-
ics in a linear self-assembling system. These polymerlike
aggregates arise when a system of small spherical mi-
celles at low concentrations undergo uniaxial growth to
form wormlike structures [5,6]. A unique feature of a
living polymer is that the molecular weight distribution
satisfies thermal equilibrium, in marked contrast with or-
dinary polymer solutions for which the molecular weight
is fixed. Previous experiments have shown that the extra
degrees of freedom in living polymers lead to an unparal-
leled richness in the dynamics, such as shear induced
gelation and hydrodynamic instability [7].

In this Letter, we present a transient electric bire-
fringence (TEB) measurement of a polymerlike micelle,
N,N dimethylhexadecylamine + sodium salicylate in wa-
ter. The relaxation is found to be nonexponential and de-
pends on the duration of the applied field, becoming in-
dependent of the pulse width only in the long pulse limit.
The pulse-width dependence can be used as a temporal
filter to study excitations on different time scales [8]. We
show that the TEB experiment can be understood in
terms of the internal collective modes of the individual
polymers. In particular, we construct a model in terms of
these modes using the Zimm model of polymer dynamics
[9]. Applying this model, we study the living polymers as
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a function of surfactant concentration ¢. In contrast to
previous experiments, we find that the living polymer is
flexible, rather than rodlike, even at concentrations slight-
ly above the critical micellar concentration ¢. (CMC).
For very dilute concentrations, 0.003% < ¢ < 0.03%, the
average length L is proportional to ¢ as predicted
theoretically [10,11]. However, for intermediate concen-
trations, 0.03% < ¢ <0.1%, but less than the overlap con-
centration ¢*, L increases at a slower rate.

Aqueous solutions were prepared by dissolving the sur-
factant monomers N,N dimethylhexadecylamine with
sodium salicylate at 1:1 molar ratio. The added aromatic
salt closely binds to the micellar surface, so that the elec-
trostatic interaction between different segments of the mi-
celles is negligible. The different concentrations were
prepared by diluting a master solution using double dis-
tilled and deionized water. We determined the CMC,
¢.=0.002%, using a surface tension measurement.

In the TEB experiment, we applied rectangular electric
pulses in the micellar solution and measured the decay of
the birefringence signal after the termination of the elec-
tric field. A horizontal electric field E was applied using
two platinum electrodes. A weakly focused HeNe laser
beam was passed through a polarizer, the sample cell
(with thickness L =2 cm), a quarter-wave plate, and an
analyzer. The optical axes of the polarizer and the
quarter-wave plate were set at 45° with respect to E, and
the analyzer was set at 90° —a (@ =0.4°) with respect to
the polarizer. The transmitted light intensity at the
detector is

1) =Igsin?lzan(DL/A+a] , 4))

where I is the input intensity, ¢ is the time, A =0.633 um
is the wavelength, and the birefringence An is the dif-
ference in the indices of refraction parallel and perpen-
dicular to E. For nAn(t)L/A < a <1, I(t) is proportional
to An(t). To obtain a good signal-to-noise ratio, a train
of pulses at a duty cycle of <0.5% was applied and the
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transmitted light intensity was averaged using a digital
oscilloscope.

In this experiment we measured the normalized
transmitted light intensity, R(z) =1(¢)/1(0). For simpli-
city, we only analyze the free decay of the birefringence.
For all pulse widths of the applied field, the TEB signal is
nonexponential and, at long times, can be approximately
fitted with a stretched exponential form R(¢) =expl— (¢/
t)P]. However, both parameters t and B depend strongly
on the pulse width 7T, with B decreasing and t increasing
for longer pulses. Figure | shows the pulse-width depen-
dence of R(¢) for a sample with ¢~0.05% and E =50
kV/cm. The decay of the birefringence gradually ap-
proaches a limiting form as T increases from 30 to 300
us. For T > 300 us, the pulse-width dependence is unob-
servable. Similar trends were also observed for other con-
centrations and electric-field amplitudes. The depen-
dence on T implies that the relaxation depends on the
way the system is perturbed and, as will be discussed, is
due to a broad distribution of relaxation times. To ascer-
tain that the pulse-width dependence is not caused by
nonlinear effects, we measured the relaxation at a fixed T
while varying the strength of the electric field for the
same sample. The amplitude of the birefringence scales
as E % and the normalized transmission intensities collapse
onto a single curve as shown in the inset of Fig. 1. There-
fore, the measurements are in the Kerr regime and the
optical anisotropy is due to induced dipoles.

We can understand the experimental data using a sim-
ple model. Assuming the interchain interactions are
negligible, we consider a single polymer chain of /N mono-
mers and persistence length £ The birefringence signal
due to a square pulse of duration T is
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FIG. 1. TEB as a function of pulse width 7. From bottom to
top, T is 30, 60, and 300 us. The solid lines are calculated using
Eq. (8). The inset is TEB as a function of the amplitude of ap-
plied field, £. In increasing order, E is 2 (0), 4 (@), and 7 (&)
kV/cm.

where u(t,N) is the linear-response function. The nor-
malized relaxation will be independent of the pulse width
only if u is a single exponential. If this is not the case,
there will be a nontrivial 7 dependence. Dynamical
linear-response theory relates u to the equilibrium corre-
lation between the observed quantity, An, and the cou-
pling to the applied field [12]. For induced dipoles, the
coupling is also proportional to An, so that

ult—1'\N) e —gl—(An(t)An(t')), 3)

where the brackets give the zero-field expectation value.

The solution scatters light very weakly, indicating that
the indices of refraction of the micelles and solvent are
well matched. Since the form birefringence is proportion-
al to the mismatch, it can be neglected relative to the in-
trinsic birefringence. We can write the intrinsic bire-
fringence in terms of the Fourier transform along the po-
lymer chain, R, =X =R (n)cos(2zgn), where R(n) is
the position of the nth monomer, g =p/N, and p is an in-
teger. The Fourier transforms are the collective modes of
the polymer chain. Each mode relaxes exponentially but,
due to the different length scales associated with each
mode, there is a large variation in the relaxation times.
The intrinsic birefringence is

AnG#Zqz(Z,,Z-,,—X,,X_q), 4)
q

where Z, and X, are the Z and X components of R, with
Z being the direction of the applied field. Combining Egs.
(3) and (4) we find

4 2 iy
ut—1' Ny, g (]Zv"Z_q) exp[— 2t =0) J , (5)
q

2
T‘I Tq

where (Z,Z _,) is the equal-time expectation value and
7, is the relaxation time of the gth mode.
We factor (Z,,Z_{,)2 into scaling and nonscaling parts,

(ZqZ—q)z=Nq_(4v+2)F(q), (6)

where v is the Flory exponent and F(q) is a cutoff func-
tion which smoothly decreases the amplitude of modes
with length scale shorter than £&. We choose F(g) to be a
Gaussian, F(g) =expl[—2(£q/b)?], where the “mono-
mer” size b is taken to be the diameter of the polymer
strand and &/b is the number of monomers in a per-
sistence length. Other forms of F(g) with the same quali-
tative features give similar results. Since hydrodynamic
effects determine the long-time-scale dynamics, we use 7,
obtained from Zimm model of polymer dynamics. In the
scaling regime, t,ocq ~*". Using & as a reference, we
take 7, =(n,&/kpT)(Eq/b) ~3", where n; is the solvent
viscosity. As will be shown, our simple model is sufficient
to qualitatively explain the present experiment. Precise
quantitative results will require a more accurate modeling
of the short-length-scale dynamics.

Using these results, the observed birefringence due to a
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chain of length N is [Eq. (2)]

An(t,N)~E3Y,

4v—2
LJ (l—e_T/r")(l—e_'/"')F(q).
9 |4

@)
Each term in the sum corresponds to a different collective
mode, so that the TEB is a probe of these microscopic de-
grees of freedom. The collective modes have a broad dis-
tribution of relaxation times which lead naturally to
nonexponential decay and pulse-width-dependent relaxa-
tion. Note that a distribution of polymer sizes is not
necessary for nonexponential behavior; the birefringence
of even a single polymer relaxes nonexponentially.

For living polymers with a distribution of contour
lengths, the birefringence must be weighed accordingly.
If electrostatic interactions are negligible, the micellar
size distribution is P(L) =(1/L)exp(—L/L), where L is
the average contour length [10]. In the low concentration
limit L =b¢explE/2ksT], where E is the scission ener-
gy associated with creating two end caps [10]. Using this
distribution function the full expression for the bi-
refringence is

Aan(1)=—= 2, An(t,N)exp(—N/N) , (8)
N=1

z||-

where in our discrete model N is the average number of
monomers per polymer chain. The measured relaxation
is R(t) =An(1)/An(0).

This model captures all the features we observed exper-
imentally. The transmitted intensity is proportional to
E? as is required in the Kerr regime. The pulse-width
dependence is given by the factor 1 —exp(—T/7,). This
factor behaves as a high-pass filter which selects a partic-

ular range of collective modes of the polymers. For a
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FIG. 2. logiof—Inlan(t)/an(0)1} vs logio(r). The concen-
trations ¢ are 0.003% (triangles), 0.05% (circles), and 0.1%
(squares). The solid lines are the fits using the model. At large
times the TEB can be fitted approximately with a stretched ex-
ponential with $=0.5, 0.45, and 0.4 for ¢ =0.003%, 0.05%, and
0.1%, respectively.
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short pulse, only the high-g modes (t, < T) are excited
and the relaxation is fast. On the other hand, for a very
long pulse all modes are excited, the relaxation is slow,
and is independent of 7. This pulse-width-dependent re-
laxation is a general feature of systems with many de-
grees of freedom and will be useful as a spectroscopic tool
to investigate interesting dynamics in complex systems
[81.

We fit our experimental data using Eq. (8). There are
only two fitting parameters, &/b and N. As shown by the
solid lines in Fig. 1, the model mimics remarkably well
the experiment for different pulse widths and electric
fields. For this particular sample, the fitting procedure
gives £/b =S5 and N = 30. The diameter of the polymer
strand, b, was measured to be 5 nm by scanning electron
microscopy, and therefore £ =25 nm. We note that the
data cannot be fitted without the polymer size distribu-
tion.

We next analyze R(¢) in the large T limit as a function
of surfactant concentration ¢. Figure 2 shows R(z) for
#=0.003%, 0.05%, and 0.1%. The data can be adequate-
ly fitted with the model except at very short times. The
short-time discrepancy is expected because the large-q
fluctuations are only partially accounted for in the model.
At long times, our experimental data can also be fitted
approximately with a stretched exponential. The stretch
exponent B decreases from 0.5 to 0.4 as ¢ increases.
However, in our model the stretched exponential is not
the asymptotic decay but is merely a good approximation
within the experimental time windows.

Figure 3 shows the average contour length L(=bN) vs
(p—0.)'"2. We found that L increases from ~50 nm at
small ¢ to —300 nm at the largest ¢ in the experiment.
The persistence length & increases slowly from 3b to 5b as
a function of 9. Two growth regimes were identified. For
0.003% < ¢ <0.03% our data are consistent with the
theoretical prediction of L ~+/¢. On the other hand, for
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FIG. 3. Average contour length as a function of ¢. At small
¢, L increases as \/a and at the higher ¢, L increases at a slower
rate. The solid line is the fit for small ¢.



VOLUME 68, NUMBER 9

PHYSICAL REVIEW LETTERS

2 MARCH 1992

0> 0.03%, L increases at a slower rate. This result has
not been previously observed and is not accounted for in
the current theory [10,11]. From the slope of Fig. 3 we
derive the scission energy to be E = 15kgT. The large
scission energy suggests a strong preference for uniaxial
growth, and is consistent with our observation of a very
small CMC. The scission energy measured in our TEB
experiment is comparable to a well-known living polymer
solution, SDS in NaCl, where Missel er al. found
E=10kgT [5].

It is interesting that good agreement is obtained with
the model even at low surfactant concentrations. For the
smallest ¢, L is ~3¢&, indicating that the polymer is still
flexible. The observed ¢ dependence of R(t) is entirely
different from that seen in a recent birefringence experi-
ment by Bellini et al. for a different living polymer [13].
They fit their data by a stretched exponential, but their
effective exponent B is an increasing function of ¢ rather
than a decreasing function of ¢ as observed here. Never-
theless, the exponents are about the same at large ¢ in
both experiments. This suggests that at these concentra-
tions their micelles also behave like flexible polymers. At
low concentrations, Bellini et al. interpreted their result
to indicate a rodlike phase. We conclude that, since our
observed £/b is small and the ¢ dependence of R(¢) is
quite different from that of Bellini et al., any rodlike
phase of our micelle is restricted to an extremely narrow
concentration regime near CMC. A possible reason for
the difference is that our living polymer has an extremely
small persistence length and a large scission energy which
gives rise to the interesting polymeric behavior even at
low concentrations.

We also measured the hydrodynamic radius Ry of
the living polymers using quasielastic light scattering
(QELS). Since Ry <A, QELS measures the polymer
diffusion rather than the internal modes of the polymer.
For small ¢, Ry can be obtained from the diffusion con-
stant using the Stokes-Einstein relation. However, the
living polymer scatters light very weakly, so that Ry can
only be measured for ¢ > 0.05%. We found that the aver-
age Ry is consistent with the radius of gyration, R, ob-
tained from our model.

In summary, we performed a transient electric bire-
fringence experiment on a living polymer solution. We
showed that both the nonexponential relaxation and the

pulse-width dependence can be understood in terms of a
model based on the collective modes of the polymers. We
found that the average contour length increases as V¢ at
low concentrations while leveling off at higher concentra-
tions. The deviation from /¢ dependence for L is not
well understood and should be explored further. We also
found that the micelles are flexible even very close to the
critical micellar concentration. This is in marked con-
trast with previous studies where a rodlike phase is found
prior to the polymeric phase. We note a preprint by
Hong et al. [14] which applied similar ideas to a TEB ex-
periment for DNA.
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