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ESR Studies of Compensated Si:P,B near the Metal-Insulator Transition
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We have studied the ESR properties of three compensated n-type Si:P,B samples near the metal-
insulator transition covering the low-temperature regime from 30 mK to 10 K. We find that both the
susceptibility and the ESR linewidth increase dramatically as the temperature is lowered, and in the me-

tallic Si:P,B samples the susceptibility increase is more than in similar uncompensated Si:P samples. We
compare results for the insulating phase with numerical calculations, then discuss the metallic region in

light of various theoretical models for the low-temperature thermodynamic behavior.

PACS numbers: 71.30.+h, 72. I S.Cz, 76.30.Pk

In a simple picture of the metal-insulator (MI) transi-
tion the low-temperature excitations in the insulating
phase involve localized electrons, while in the metallic
phase they involve itinerant electrons. Within this picture
one expects that the magnetic properties of these two
phases are drastically diA'erent —the Fermi-liquid-like
metallic phase is expected to have a small, nearly tem-
perature-independent susceptibility, while the insulating
phase should have weakly interacting local magnetic mo-
ments with a large Curie-type susceptibility. However,
numerous ESR [1-4], NMR [5-8], and thermodynamic
measurements [9-15] have shown that this simple picture
is inadequate, at least in the extensively studied case of
phosphorus-doped silicon (Si:P). The magnetic proper-
ties of Si:P are found to be surprisingly similar in the me-

tallic and insulating phases near the MI transition and
show characteristics of local magnetic moments. This ob-
servation suggests that local magnetic moments persist
into the disordered metallic phase and dominate the low-

temperature thermodynamic properties [1,9, 12-151 as
well as the spin dynamics [7,8]. Milovanovic, Sachdev,
and Bhatt [16] have numerically solved a disordered
Hubbard model with randomly placed centers within a
self-consistent-field approximation and found local mo-

ment instabilities at a few percent of the sites in the me-

tallic phase, in rough agreement with the experimental
result in Si:P. A Fermi-liquid theory incorporating the
local moments has been formulated by Sachdev [17].
Bhatt and Fisher [18] have very recently given arguments
that these local moments persist down to the lowest tem-
peratures, notwithstanding the Kondo eAect or the local-
moment-local-moment interaction. However, these theo-
retical approaches do not address all aspects of the eff'ects

of local moments in the disordered metal, e.g. , how they
aAect the critical conductivity behavior at the M I transi-
tion.

Attempts to clarify the above issues by comparing com-
pensated and uncompensated semiconductors near the MI

transition have raised more questions. Recent N M R
measurements in boron-compensated Si:P [19] are in

qualitative agreement with similar earlier measurements
in uncompensated Si:P [7] and are interpreted in terms of
interactions of Si nuclei with local moments. However,
the critical conductivities of Si:P [20] and Si:P,B [21,22]
behave quite diff'erently and one finds a steeper conduc-
tivity onset for the uncompensated case. Fitting the con-
ductivity near n, by the c. ritical form tTcs:(n —n, )", the
critical exponent is p =0.5 and 0.9 for Si:P and Si:P,B,
respectively.

In this Letter we report low-temperature ESR mea-
surements for three Si:P,B samples in the vicinity of the
M I transition and compare both their spin susceptibility
and ESR linewidth with previously determined values for
uncompensated samples [4]. The three samples had elec-
tron concentrations of (2.6, 4.9, and 8.0) X 10'" cm ' and

compensation values, defined as the ratio of acceptor to
donor doping densities, of 0.6, 0.5, and 0.5, respectively.
The electron density n was determined from the room-

temperature Hall coeScient and the compensation from

the value of n and the donor doping density Nz measured

by neutron activation. This procedure is described in de-

tail elsewhere [21,22]. The samples were in the form of a

stack of ten thin slabs, 12&9X0.4 mm each, cut thinly to
minimize eddy-current losses. The doping profile of each
slab was measured at room temperature with a resistivity

technique and found to span ~ 7%. This is somewhat

more than the + 2% density variation of the uncompen-
sated Si:P samples used in the earlier control experiment
[4]. However, the density variation is not expected to
significantly afTect the susceptibility, which is found to
vary gradually as n goes through n, . The ESR techniques
in this experiment and in the earlier Si:P study [4] were

identical. Again the - Si NMR signal was used for cali-
brating the ESR spectrometer in absolute susceptibility
units. We estimate an absolute accuracy of + 20% for
our susceptibility values.

1418 1992 The American Physical Society



VOLUME 68, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MARCH 1992

10'
0.

10
~ Si: P, B; n=2.6x10,n/n&=0. 58

Si: P; n=2.9x10,n/pc=0. 78

10

102 10
~ ~~0 '~

g++C~ ~

10—

1.8

10 2—
0
0~

Og O

OO/w

0

9o
00

10-1

10 10-' [

10-"
10 ~

10

0.1
1P 2

[

10-1 10"

T(K)
FIG. 2. Comparison of measured normalized susceptibilities

g/gc„, ;; (circles) of insulating Si:P and Si:P,B samples with

theoretical calculation (dashed lines) described in the text.

T(K)
F1G. 1. Temperature dependence of normalized susceptibili-

ty g/gp, „~; of three Si:P,B samples with diA'erent normalized
electron densities, n/n, =0.58, I. I, and 1.8. Solid lines through
data are a guide to the eye.

terms. The ground state is tested for stability against
one- and two-electron hops. The susceptibility is then
calculated in the manner of BL using the antiferromag-
netic spin- & Heisenberg exchange Hamiltonian:

H QJ(rj)S; S/,

In Fig. 1 we show the enhancement of the susceptiblity

g (relative to gp.„„~;=3npa/2kaTF) as a function of tem-

perature for all three compensated samples. These data
are qualitatively similar to the uncompensated Si:P data
[4], i.e., the susceptibility increases towards lower tem-

peratures approximately as a power law @~T '. As
shown in Fig. 2, this temperature dependence is observed
over our entire temperature range for insulating samples.
In this figure we have compared the normalized suscepti-
bilities g/gc„„, ec T' ' (gc«,„=npa/3kaT) of compen-
sated and uncompensated Si:P and find, using least-
squares fits, that the exponent a=0.75+ 0.05 for Si:P,B
is somewhat larger than the value of 0.62 ~0.03 for Si:P.
The dashed lines in Fig. 2 represent a quantitative
theoretical calculation of the susceptibility using no ad-
justable parameters as explained below.

The susceptibility of uncompensated Si:P for n &n,
was explained by Bhatt and Lee (BL) using a quantum
spin- —, random Heisenberg antiferromagnetic Hamiltoni-
an [23]. We have performed a similar computer calcula-
tion of the susceptibility of a model appropriate for a
compensated doped semiconductor deep in the insulating
phase. The model consists of distributing donor and ac-
ceptor sites at random in a 3D continuum. The negative-
ly charged acceptors provide a fixed random Coulomb po-
tential while the electrons are allowed to occupy the
donor sites with the lowest-self-consistent energies,
neglecting quantum-mechanical (hopping, exchange)

where the sum over i and j includes the electron occupied
donor sites. For the exchange constant we use the asymp-
totic hydrogenic result [24] J(r) =Jo(r/a) / exp( —2r/
a), where a 16 A (n, / a=0.25 for Si:P) and Jo=I40
K. The high-temperature curvature of the theoretical
lines in Fig. 2 is due to the asymptotic formula chosen for
J(r). This formula underestimates J at small r and these
are the values relevant at high temperatures. A theoreti-
cal estimate of the exponent a, obtained from the low-

temperature behavior of the dashed lines in Fig. 2, is

found to be slightly larger in the compensated case. This
is due to the rearrangement of the electron occupied
donor sites, which results for the compensated case in a
distribution differing from the Poisson distribution at
short distances. In summary, the theory with no adjust-
able parameters is in remarkable agreement with the ex-
perirnental results for the insulating phase.

The difference between Si:P and Si:P,B is more
dramatic on the metallic side of the MI transition —the
susceptibility enhancement is unexpectedly large in

Si:P,B at the lowest temperatures even for the very rnetal-
lic sample n/n, =1.8. As shown in Fig. 3, comparing Si:P
and Si:P,B samples with similar values of n/n, =1.1, th.e
compensated system shows a factor of 3 to 5 larger local
moment fraction than the uncompensated one for T & 0.1

K. This is in contrast to the theoretical results of Milo-
vanovic, Sachdev, and Bhatt [16) who find for the disor-
dered Hubbard model that the fraction of local moments
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decreases at carrier concentrations away from half filling
of the band. One possible cause of this discrepancy is the
presence of random fields in the experimental system aris-
ing from the negatively charged acceptors and positively
charged donors. These are not included in the disordered
Hubbard model calculation. Another possibility is the
emergence of ferromagnetic exchange interactions due to
the departure from half filling.

Assuming that the increased g is due to an increase in

the number of local moments rather than to ferromagnet-
ic interactions and further that the strength of spin-flip
scattering of itinerant electrons increases with the num-
ber of local moments we would expect the spin-flip rate

' to be higher in compensated samples. This increased
spin-flip rate could account for the critical-exponent
difference between uncompensated Si:P and compensated
Si:P,B, provided r, is just below or equal to kaT/6 in

Si:P within the T range from 3 to 100 mK. With this
particular value of r, , the higher spin-flip rate of Si:P,B
(which should be checked by the magnetoresistance mea-
surements) could put it (but not Si:P) into the spin-flip
universality class [25,26]. However, within the same
scaling approach for the spin-flip universality class, g is

not expected to diverge as T tends to zero, in contrast to
the experimental evidence in Si:P,B. Thus, the one-
component (i.e. , the long-wavelength mode) scaling
theory requires a coincidence of parameters to explain the
critical-conductivity differences between Si:P and Si:P,B,
and even then needs local moments to explain the suscep-
tibility of Si:P,B.

The ESR line is broadened by the hyperfine interaction
between the electrons and the P nuclei (hyperfine interac-
tion with the nuclei of negatively charged 8 acceptors is

very small due to the Coulomb repulsion) but motionally
narrowed by the rapid electron spin motion. In the

FIG. 4. Log-log plot of ESR linewidth vs susceptibility for
uncompensated and compensated Si:P. Both quantities have
been normalized by their values at a temperature T=3 K.

Fermi-liquid picture the spin motion is diffusive and can
be tied to the Fermi-liquid properties of the sample [27].
In the localized moment picture the low-temperature
linewidth is dominated by the fast spin-lattice relaxation
of the local moments which then relax the itinerant elec-
trons through the exchange processes [28]. The localized
moments form clusters and spin motion via exchange pro-
cesses determines their motional line narrowing [29]. In

previous measurements of the uncompensated samples [4]
the linewidth was observed to increase towards lower
temperatures with the increase apparently proportional to
the susceptibility increase. This simple proportionality is

also predicted in the lowest-order disordered Fermi-liquid
model [4,27] and it was argued that this observation sup-

ports the validity of the scaling theory description.
We find a broader ESR line in the compensated sam-

ples than in the uncompensated samples with similar
values of n/n, The extra . linewidth of Si:P,B samples
might be expected, given the electron repulsion away
from the B ions. This leads to an increase of both the
electron wave function and the hyperfine interaction at
P + sites. I n Fig. 4 we have plot ted the normalized
linewidth as a function of normalized susceptibility for
both the compensated and uncompensated Si:P. The nor-

malization was done with the T =3 K values of the
linewidth (AH ii2)q x =0.9, I.I, and 1.6 G (0.45, 0.45, and
0.60 G) and the susceptibility @3'/gp„. „i;=3.0, 3.2, and

3.4 (4.5, 2.9, and 2.5) in the compensated (uncompensat-
ed) low-, medium-, and high-density samples, respective-

ly. We find several interesting features in the data of Fig.
4. First, for the compensated samples the linewidth is not
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IJH ~tz ec Hht(trt y„Hht/ktt T) ' (2)

In qualitative agreement with Fig. 4, Eq. (2) predicts a
linewidth which for a &0.5 has a weaker temperature
dependence than the temperature dependence of the sus-

ceptibility, g~ T . An exact proportionality between
the linewidth and susceptibility is accidentally achieved
when a= —,'. Computer calculations such as those done
for the uncompensated system [29] are necessary to
check the merits of this rather simplified argument.

In conclusion, our ESR studies of boron-compensated
Si:P near the MI transition support the two-fluid model
of localized spins and itinerant electrons in the metallic
phase. The interaction between the two "fluids" leads to
the spin-flip scattering of the itinerant electrons. The
strength of this spin-flip scattering may affect the critical
conductivity exponent. In the insulating phase the sus-

ceptibility is found to be in quantitative agreement with
the computer simulations of a generalization of the Pois-
son distributed random antiferromagnet to take into ac-
count the effect of compensation.
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ful discussions during this work.
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