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The Fortuin-Kasteleyn transformation is employed to relate two-dimensional classical ferromagnets to
correlated site-bond percolation problems. Modulo some technical assumptions, this approach is used to
produce an alternative rigorous proof for the existence of a phase characterized by algebraic decay of
correlations in the O(2) model. Certain rigorous results are also derived for some discrete spin models

[Z(N), cube, dodecahedron].
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A few years back Brower and Tamayo [1] and Patras-
cioiu [2] proposed a new way of updating Monte Carlo
studies of the nonlinear O(/V) sigma models. The crucial
observation was that one can introduce an Ising variable
o= 11 and parametrize the spin as

si=|si-uloiu+s;,. (1

Here u is an arbitrary unit vector and u-s;, =0. In terms
of these variables the partition function of the O(V)
model with the usual standard nearest-neighbor action
(SNNA) becomes

z=) [.I;I/\fdsindsi,,]

{o}

xexp ['B<Z> (S,'qunO','O'j +S,'p‘ Sj,,)] y (2)
1,J

where s;;=|s-u|. With respect to the o variables, this is

the partition function of an Ising ferromagnet, for which

the Swendsen-Wang [3] Monte Carlo procedure can be

applied.

It is well known [3] that at the basis of the Swendsen-
Wang procedure lies the exact mapping of the Ising mod-
el into a correlated site-bond percolation problem estab-
lished by Fortuin and Kasteleyn [4]. In a separate paper
[5] we use this mapping to obtain certain analytical re-
sults concerning the phase structure of some spin models.
We believe that this percolation approach to classical spin
models is very powerful and provides an intuitive under-
standing of the phenomena responsible for the phase tran-
sitions and we would like to bring it to the attention of
the community. The present Letter contains only a brief
description of the techniques employed and of the results
obtained. Among the latter (we note that modulo three
conjectures are needed for technical reasons), we give an
independent rigorous proof for the existence of the
Kosterlitz-Thouless phase transition in the O(2) model
(original proof by Froehlich and Spencer [6]). We also
obtain rigorous results for certain discrete spin models
such as Z(N) (Abelian) and the cube and the dodecahed-

ron (non-Abelian).

We consider the following modification of the SNNA
O(N) models—to be called “cut action”: The Gibbs fac-
tor in Eq. (2) remains unchanged provided |s(i)
—s(j)| <€ for some 0<e<2 and vanishes otherwise
(we forbid angular deviations between any two spins at
adjacent sites larger than a certain value). At small tem-
peratures 1/B, several rigorous results [7,8] guarantee
that for the SNNA the probability for big angular devia-
tions between nearest-neighboring spins is exponentially
suppressed (in B). We introduce the “cut” model to
avoid estimates of the entropy of defects—bonds with
large angular deviations—but in view of the above, we
expect the cut and the SNNA models to exhibit similar
behavior for large g and e > 0(1/VB).

Next we would like to state our three conjectures,
which, as will be seen, are needed only for technical pur-
poses. It is well known that in two dimensions (2D) a
continuous symmetry is not broken (Mermin-Wagner
theorem [9]). The rigorous proof [10] requires a twice
differentiable Hamiltonian and thus does not apply to the
cut action. However, we will assume the following.

Conjecture |.— Every invariant Gibbs state of the cut
action model is O(N) symmetric.

A crucial property used in our approach regards the er-
godic properties of the Gibbs state. In the case of a con-
tinuous symmetry model, in view of conjecture 1, it is
reasonable to expect that there is a unique translational
invariant Gibbs state— independent of the boundary con-
ditions. In a case where the symmetry is discrete, we
would expect that at least for given boundary conditions,
the Gibbs state is unique. If that is the case, by Birkoff’s
ergodic theorem, ensemble averages equal spatial aver-
ages. To be specific, imagine a Monte Carlo study of one
of these models. After a certain number of “thermaliza-
tion” sweeps, one starts the measurements by computing
time averages over successive configurations. By ergodi-
city, an alternative procedure would be to use only one
*“thermalized” configuration and to measure on it the spa-
tial average of the observable. In the infinite volume lim-
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it, the two procedures would yield the same result. Let us
call any such well-thermalized, infinite-volume config-
uration for which the spatial average equals the ensemble
average, a “‘typical” configuration. Our second conjec-
ture is as follows.

Conjecture 2.—There exist typical configurations in
the O(V) spin models.

We cannot prove this fact but let us stress that this as-
sumption is made tacitly in numerical studies, where one
uses spatial averaging to improve the statistics. Conjec-
ture 2 really implies conjecture | because if the Gibbs
state is unique it will automatically be O(N) invariant.
But for the sake of clarity we state the two conjectures
separately. For discrete models the symmetry may be
spontaneously broken; in that case there will still be typi-
cal configurations for each pure phase (ergodic com-
ponent).

Any typical configuration must reflect the properties of
the ensemble. Suppose that we asked the following ques-
tion: In a typical configuration of O(N), do the sites
where the associate Ising spin o is positive [defining a
hemisphere of S(N—1)] percolate? By percolation we
mean the existence of an infinite chain of adjacent sites
where o=+1. On a square lattice S one can define *
percolation by also allowing connections across the diago-
nal. It is easy to see that on S, the boundary of any ordi-
narily connected cluster is a *-connected cluster. On a
triangular lattice 7, there is no distinction between ordi-
nary and * percolation and this is the reason for our dis-
cussing T lattices. Returning now to the question asked
by the Mermin-Wagner theorem, if a cluster with o =+1
percolated, so should one with o= —1. The problem is
that because the measure which has produced this typical
configuration enjoys the symmetries of the lattice
—translations and discrete rotations—in 2D two clusters
cannot percolate at the same time. Indeed, if there is one
site having an infinite chain attached to it, by translation-
al invariance, there will be many others, and by rotational
invariance, they will be running in arbitrary directions.
In 2D, these chains, along which o =+1, will inevitably
cross and produce a circuit surrounding the origin. A
cluster of = —1 could no longer escape to infinity. This
property has been proved rigorously for the ordinary Ising
model [11] and we state it as a conjecture for the O(V)
or discrete spin models. Namely, let E be some set (such
as o =+1) and E its complement.

Conjecture 3.—1In 2D, for the O(V) or discrete spin
models, one cannot have simultaneous percolation of E
and E on the T lattice.

Having stated our three conjectures, let us briefly
sketch the way they are being employed. We will address
here the case of O(2) and refer the reader to Ref. [5] for
the discrete spin models. We would like to consider the
magnetic susceptibility of the Ising variable o:

ZISETII\—I_ Z (o.\‘Q|')- 3)

rEA
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Here (- - -) means expectation value with respect to the
original Gibbs measure. In view of conjecture 2, we can
replace this expectation value by the one obtained for an
ordinary Ising spin in which the coupling constants
Bij=PBsasji, with s taking the values of a typical
configuration. According to the Fortuin-Kasteleyn result
[4], x15 equals the expected mean cluster size of clusters
constructed as follows: A bond is placed only between
clusters of like o’s and then only with probability
1 —exp(2B;;). We will call clusters of like 6’s H clusters
and those of Fortuin and Kasteleyn, FK clusters. Each
FK cluster can be flipped randomly with probability & .
Consequently for the cut model, the bond occupation
probability must be modified slightly, namely, a bond
must also be placed between like o’s if

—susji+sip s, <1—€/2. (4)

In particular, these inequalities require placing a bond
between like o’s if

S,'||> 6/2. (5)

Therefore in the case of the cut action model, the FK
clusters must contain clusters of sites defined by Eq. (5).
As we shall argue next, the mean cluster size of the latter
has to be divergent and that will complete the proof.

First, we would like to point out that from conjectures
I and 3 it follows that on a T lattice H clusters cannot
percolate. However, one could wonder if a larger subset
of the circle A percolates. We shall prove that provided
A is sufficiently large so that the constraint prevents
jumps across it,

A={p € S cose>1—¢}, (6)

neither A nor A can percolate. Indeed, suppose the oppo-
site, namely, that A percolates and 4 does not. Let Ag
be the set obtained from A4 by a 180° rotation and
decompose Aas A=A,UArUA>, where A, and A, are
adjacent to A and Ag, but not to each other. By conjec-
ture 1, if A does not percolate, neither does Ag. In the
cut model, this implies that the supposed percolating clus-
ter of A is contained entirely in either A, or A,. That
means A, or A,, which are subclusters of H clusters, per-
colate, which is impossible. QED. Russo [12] has proved
the following theorem: If in a percolation process pro-
duced by a translationally invariant measure on a T lat-
tice neither the clusters of E (set) nor E (its complement)
percolate, then the mean cluster size of both E and E
diverges. This is intuitively clear since if neither E nor E
percolate, the origin must be surrounded by an infinite se-
quence of alternating circuits of E, respectively, E. Since
in view of the above proven property, the subsets of the
FK clusters defined by Eq. (5) fulfill the conditions of
Russo’s theorem, we conclude that the mean size of the
FK clusters diverges and so does xis. QED.

How does our result relate to the usual Kosterlitz-
Thouless picture that links the existence of the soft phase
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to the suppression of free vortices? QOur proof requires
e<\/2_, which forbids vortices. Numerical simulations
reveal, however, that the system is in the soft phase for
€<1.57, p=0, i.e., also in a range where vortices are al-
lowed, but have small entropy. For ¢>1.57, =0 the
system is in a disordered phase with exponential decay of
correlations. So € can be taken as the parameter driving
the Kosterlitz-Thouless transition, a role usually played
by B.

In the case of the discrete spin models we consider a
modified action in which jumps (in spin space) farther
than one of the nearest neighbors are forbidden. For
models with discrete symmetries, symmetry breaking can
occur: Conjecture | need not be true. On a T lattice we
prove that with this modified action such models are ei-
ther in a phase with long-range order or with algebraic
decay for any f=0. The percolation approach is not
sufficiently powerful to shed light on a long-lasting dilem-
ma [13]): Does the constraint Z(4) model on a T lattice
possess a massless intermediate phase at $=0? Modulo
two technical assumptions (conjectures 2 and 3), we
prove rigorously that it cannot have a phase with ex-
ponential decay. The same conclusion applies to the con-
straint discrete Gaussian model. We conducted Monte
Carlo studies of some of these discrete spin models and
the results are reported in a separate paper [14].

In closing we would like to state that the percolation
approach can be applied to all O(/V) models, as well as to
many discrete models containing a Z(2) symmetry. The
cases addressed here and in Ref. [5] are facilitated by the
special topological properties present in some models on
the T lattice. An attempt to extend these proofs to more
complicated problems such as O(/V), N = 3, is presented
by one of us in a separate paper [15].
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