
VOLUME 68, NUMBER 9 PHYSICAL REVIEW LETTERS

Current Carrying States in the Lowest Landau Level
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We have performed numerical calculations for noninteracting electrons in two dimensions in the
high-magnetic-field (lowest-Landau-level) limit in the presence of a random potential. By identifying
the first Chem character of each eigenstate, we show directly from the data for sizes varying from JV'=8
Aux quanta to A(=128 that the lowest Landau level has extended eigenstates only at a single energy E,
(the center of the band). The localization length ( is found to diverge as (E E„)—", with v=2.4~0.1,
in agreement with previous calculations.

PACS numbers: 7 I.50.+t, 71.30.+h, 7 I.55.3v

The prediction of the absence of truly extended states
for noninteracting electrons in a disordered two-
dimensional system in zero magnetic field [1] was fol-
lowed only the following year by the discovery of the in-

teger quantum Hall effect [2]. Halperin [3] showed that
the latter implied that extended states must exist (or the
localization length must diverge) at least at isolated ener-
gies for electrons in a two-dimensional system in this
high-field (Landau-level) limit. The simplest two generic
possibilities which could occur in the lowest Landau band
are schematically shown in Fig. 1—(a) extended states
occupy a finite region in the center of the energy spec-
trum, resulting in localization length g diverging at both
the mobility edges; and (b) there is a singular point E,
away from which the localization length is finite.

Early work by Ono [4] based on a self-consistent Born
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FIG. 1. Schematic drawing of the density of one-electron
states and localization length for the two scenarios in the lowest
Landau level with a random potential. In (a), extended states
exist in a band near the center, and localized states in the band
edges. In (b), states are localized at all energies, except at the
center of the band, where the localization length diverges.

approximation suggested an exponential divergence of lo-
calization length ( exp[En/(E —E, ) ] at the center of
the Landau band for the quantum problem. However, in
the classical limit of a weak but smoothly varying poten-
tial, Trugman [5] showed that the problem maps onto a
two-dimensional percolation problem. Here again there
is a unique critical energy E„at the center of the band,
but in contrast to Ono's result, the localization length
diverges as a power law (-iE—E„( " with v, i

[The classical limit can be formally defined by the limits
V(r)/h, to„0, I iV V(r) i/V 0, where V is the potential,
hto„ is the cyclotron energy, and / is the cyclotron ra-
dius. ] Since then, various numerical approaches based on
finite-size scaling of localization length g [6-8] and Hall
conductivity cr„[9]as well as on the series-expansion ap-
proach [10,11] for the quantum problem have been con-
sistent with a single critical energy and a power-law
divergence of g, as in the classical case, but with a
different exponent vg between 2.0 and 2.5. The most ex-
tensive numerical work due to Huckestein and Kramer
[7] yields vg =2.34 ~0.04, in remarkable agreement with
the analytic result v(t = —', of Mil'nikov and Sokolov [12],
which takes into account the effect of quantum tunneling
in the percolation picture and is claimed to be correct in
an intermediate limit.

While these approaches have made a convincing case
for scenario (b), this result is based on the observation
that better fits can be obtained to the numerical results
with that assumption. Consequently, it would be desir-
able to obtain this result more directly from numerical
studies. Arovas et al. [13] have shown that one can use
the topological properties of the eigenstates to distinguish
between localized and extended states, which presents the
rather unique opportunity of studying the evolution of ex-
tended states directly in a series of finite-size samples. In
this paper, we have used this approach, and, by studying
the variation with size, we are able to extrapolate to the
thermodynamic limit. The existence of a topological in-
variant which is related to the current carrying capacity
of the wave function offers a more direct method of iden-
tifying extended states than the conventional probes of
the wave function [7] which typically require very large
system size.
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We consider the Hamiltonian H =bio+ V(r) in two di-

mensions, with kinetic energy Ho=(2m) '(P+eA/c) .
For a free particle, Ho is a harmonic oscillator in the cy-

clotron coordinates, with a spectrum E„=(n+ —,
' )bra,

and a natural cyclotron frequency co,. =eB/mc .Each
Landau level is extensively degenerate, with a density of
states per unit area A/A=i/2zl, where l=(hc/eB) '~

is the magnetic length. In order to treat finite systems,
we impose generalized periodic boundary conditions
on a square of side L containing an integral number
of IIux quanta A =L /2zl, by requiring t(L, ) ~+)
=exp(i8J ) ( 4) (j =1,2), where t (r) is the magnetic
translation operator [14]. We consider a number of
different random potentials V(r) described below. The
condition of high magnetic field is imposed by projecting
onto the lowest Landau level.

The Hall conductivity cz„, can be calculated as a func-
tion of both energy E and boundary-condition angles 0]
and 82. The Kubo formula for the Hall conductivity for
noninteracting electrons may be written as a sum over the
occupied eigenstates [15]:

JV'

o„,. (E;8),82) = g 8o„(m;8, , 8,)e(E E„,),—
nf t

where

~o. (~'8i. 82)
ie-' 8 tI

8) 882

(2)

is the Hall conductivity of the mth eigenstate ~m) with

energy E„„and e is a step function. As demonstrated by
Thouless and co-workers [15,16] and others [17-19],the
unweighted average of bo„„,(m) over all boundary angles
is necessarily an integral multiple of e /h. This integer
can be identified as C~(m), the first Chem index, which is

a topological invariant characterizing the topological
properties of the wave functions [20].

Since C~(m) is the average of the Hall conductivity of
the state, the Chem index is clearly a measure of the
current carrying capacity of an eigenstate, which in turn
is a statement about its extensiveness. In fact, Arovas et
al. [13] showed that there is a simple connection between
delocalization of wave functions and their topological
characteristic which leads to a nonzero o„,. The wave
function of state which carries an average nonzero Hall
current can be forced to vanish at any specified position
in real space by the appropriate choice of boundary con-
ditions whereas that of a state with zero average Hall
conductivity cannot. This means that the first Chem in-

dex C~(m) tells us the sensitivity of nodes of the wave
function to changes in boundary conditions. This proper-
ty can be used to differentiate between states with

C~(m)&0 whose nodes can be moved at will (extended)
and those with C~(m) =0 whose nodes are confined in

n , n

(3)

where the sum is over the extended states of all JV, sam-

ples for a given size. The latter equality follows from the
fact that the mean energy for the ensemble is guaranteed
to be zero by electron-hole symmetry.

In Fig. 2 we show the total density of states as well as
the density of extended states for the Gaussian random
potential for system sizes JV'=8 and A =128. As can be

space (localized). In this paper we adopt the above
definition of extended and localized states and perform
numerical calculation over finite-size samples to study the
statistical properties of these extended states.

We have studied systems with sizes W =8, 16, 32, 64,
and 128, keeping the magnetic field fixed, so that scaling
with JV' is the same as scaling with the area of the sample.
For each size we have diagonalized the system between
100 and 2000 random potential configurations depending
on size. We have considered diff'erent types of random
potentials. Numerically, the simplest to implement is the
Gaussian white-noise potential, where the system is con-
verted into a M & M grid, in which the microscopic length
ao=L/M is small compared to I. The potential is gen-
erated by choosing an independent Gaussian-distributed
random value for each plaquette. However, in order to
check for universality, we have also considered a potential
due to randomly placed short-range scatterers which may
be closer to the experimental situation. For this case, we

randomly sprinkle the M & M grid with N;~„unit scatter-
ers with a Gaussian potential

i (r) = ~ voexp(-r'/2o'),

half of which are positive and half negative. In either
case, the L&L sample is periodically extended to tile the
entire plane. In contrast to the classical percolation mod-
el, which corresponds to a smooth and long-range corre-
lated potential, we have kept o/l=0. 5 and ao/I (1 in

both cases, so that our potential has only short-range
correlations and we are dealing with the quantum limit.
For a system projected onto the lowest Landau level there
is electron-hole symmetry for the ensemble average.
Consequently, for every given random potential we aI-
ways keep another copy with the sign of the potential re-
versed at every point in space in the ensemble average.
The density of states averaged over our finite ensemble is

thus a symmetric function of energy.
For each size and potential we calculate the Chem in-

dex of each eigenstate; from the ensemble average, we ob-
tain the average density of states and density of extended
states. We find that the extended states cluster around
the center of the Landau band. We calculate both the
average number JV, . of extended states (states with

nonzero Chem number) as well as the mean width of the
band of extended states

AE = g (E„E)'/A, A', = g —E„/A, JV, . .
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FIG. 2. Density of states of all states /V(E), as well as the density of nonzero Chem number states JV, (E) for samples with llux

quanta JV' equal to 8 and 128.

seen clearly, the total density of states does not change
much with JV. In contrast, the band of the current carry-

ing (extended) states becomes markedly narrower for the

larger size.
Figure 3 shows our results for the variation of h, E with

system size, normalized to Eo, the total width of the

lowest Landau band defined as in (3) but with all ÃÃ,
states included. For both random potentials, our data fall

on straight lines, suggesting a universal power-law varia-

tion of the width of extended state bands with system

size:

with

This demonstrates directly that AE 0 as JV

i.e., as we extrapolate to the thermodynamic limit, all ex-
tended states collapse to a single energy [scenario (b) in

Fig. I], in agreement with results obtained less directly

by other methods.
From the exponent x, we can obtain the correlation-

length exponent vg ((- (lE
—E, l

"~) from the following

observation. For a finite-size sample with length scale L,
since states with localization length g & L appear extend-

ed, one expects L —(AE) ~, or hE-A ~, so
x=(2vg) ', which gives v@=2.4+'O. l, in agreement
with previous results [6-12].

In Fig. 4 we show how the average number of extended

x =0.21+ 0.01 .
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FIG. 3. Relative width of extended state band AE/Eo vs A'

for two different kinds of random potentials (see text) on a log-
log scale. Solid lines are linear least-squares fits to the data.

FIG. 4. Log-log plot of the number of extended states JV', . vs
JV' for the two random potentials. The solid line is the linear

least-squares fit to the data of Gaussian white-noise potential.
The dashed line demonstrates that the data for short-range
scatterers are consistent with a straight line with the same

slope, although there is measurable deviation for small sizes.
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states JV', scales with A' for both potentials. For the
Gaussian white-noise potential we have JV',.—JV-' with
y=0.79+0.02, which gives within the statistical errors
y=l —x, as would be expected if the extended states
were to have a finite density of states at E„(the center of
the band) in the thermodynamic limit [21]. For the ran-
domly positioned impurity potential we find a small
measurable curvature on the double logarithmic plot, but
the data are consistent with the same y as in the white-
noise potential in the large-JV limit, as shown by the
dashed line in Fig. 4.

In conclusion, by adopting a definition of extended
states based on a topological invariant of the eigenstates
and performing finite-size scaling, we are able to show

directly that all extended states collapse to a single ener-

gy level E, (the band center for electron-hole symmetric
case) in the thermodynamic limit, with a finite density of
extended states at the band center. In addition, the local-
ization length g is found to diverge in a power-law
fashion (-~E—E, ~

'a with vg =2.4~0. 1, in agreement
with more conventional measures of the wave functions.
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