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Magnetoresistance Due to Chaos and Nonlinear Resonances in Lateral Surface Superlattices
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We show that chaos and nonlinear resonances are clearly reflected in the magnetotransport in lateral
surface superlattices and thereby explain a series of magnetoresistance peaks observed recently in "anti-
dot" arrays on semiconductor heterojunctions. We find a mechanism of cyclotron-orbit pinning in an
electric field resulting from Kolmogorov-Arnol d-Moser tori. An experimental verification is suggested
in terms of an enhanced cyclotron frequency associated with an anomalously reduced cyclotron radius.
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In the last few years many laboratories have achieved
the preparation of periodic submicron structures in semi-
conductor heterojunctions known as lateral surface super-
lattices (LSSLs) [1]. Several kinds of LSSLs are used in

experiments, e.g., one- and two-dimensional (2D) weak
and strong modulation of the 2D electron gas (2DEG),
arrays of quantum dots, i.e., 2D potential wells, and "an-
tidots, " i.e., reflecting potential peaks. Magnetoresis-
tance, Hall efl'ect, and far-infrared measurements show

many peculiarities [2-6]. The long-standing goal of ob-
serving Hofstadter's self-similar energy spectrum [7] in

these samples is still not accomplished; it might be
inachievable as classical chaos can modify the Hofstadter
butterfly considerably [8]. In the currently investigated
samples the superlattice spacing is larger than the Fermi
wavelength and thus the dynamics of a wave packet ap-
proaches the classical limit. Classical nonchaotic [9] and
chaotic [10,11] electron dynamics has been investigated
in different models of LSSLs. Experimental support
stems, e.g., from recent magnetoresistance measurements
in 2D antidot arrays [5,6], where a series of peaks in

R„,(B) not present in the unmodulated 2DEG was found
[see, e.g. , the dotted line in Fig. 3(e)] and explained using
a billiard model of reflecting disks and an ad hoc assump-
tion of pinned classical cyclotron orbits [5]. Circular or-
bits enclosing 1, 2, 4, 9, or 21 antidots without colliding
[similar to those in Fig. 1(a)] were assumed not to
respond to an electric field. This assumption is justified
by its success, but is not fulfilled within the billiard model
itself. Thus ar. important question is what could be the
physical nature of such a pinning mechanism. Another
serious problem is an observed extra peak [5], which be-
comes predominant in samples of smaller electron densi-
ties [see, e.g., peak X in Fig. 3(f)], It belongs to a mag-
netic field that cannot be associated with a collision-free
cyclotron orbit and it thus cannot be explained within this
scheme.

In the present Letter we investigate magnetotransport
in a model assuming a continuous antidot potential and
find that chaos and Kolmogorov-Arnol'd-Moser (KAM)
theory are reflected in the observed magnetoresistance
peaks. We demonstrate the existence of a pinning mech-
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FIG. I. (a), (b) The 2D antidot potential IEq. (3)1 for P 64
(steep potential) and P =4 (smooth potential). (c) Regular or-
bits for different magnetic fields in the steep potential surround-
ing l, 2, 4, 9, and 2I antidots and a chaotic orbit. (d) Regular
orbit for B/Bs=0.3 (solid line) deflected by the smooth poten-
tial (visualized by equipotential lines) such that iis radius is
smaller than that of a free cyclotron orbit (dashed line).

anism and explain its nature by islands of regular motion
due to nonlinear resonances. We then formulate a the-
oretical framework for frequency-dependent conductivi-
ties in LSSLs, which includes regular and chaotic motion
as well as random elastic scattering at impurities. It
reproduces the observed magnetoresistance peaks without
adjustable parameters, where surprisingly the pinned or-
bits themselves play only a minor role. We show that the
peaks are caused mainly by the correlation function of
unperturbed chaotic motion, which also reflects the pres-
ence of nonlinear resonances. The observed extra peak is
explained by a particular nonlinear resonance in the con-
tinuous potential. It has an anomalously reduced cyclo-
tron radius and we consequently predict an augmented
cyclotron frequency to show up in far-infrared experi-
ments. These results confirm that transport experiments
in modulated 2DEGs can be explained in terms of classi-
cal nonlinear dynamics.

The classical approximation for the dynamics of an
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electron wave packet in a 2D potential U(x,y) and a per-
pendicular magnetic field B is described by the Hamil-
tonian

H = (p —eA) /2m+ U(x,y),
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where A is the vector potential and m the eAective mass
of the electron. We introduce dimensionless variables
x =x/a, y =y/a, t t/r p, H =H/eF, U =U/eF, where a is
the lattice constant of the artificial structure, eF the Fer-
mi energy, and rp=(eF/tna ) ', and we scale the mag-
netic field by Bp=2(2meF)' /ea, where B=Bp corre-
sponds to a free cyclotron radius of a/2. Choosing the
gauge A = —rx B/2 for the vector potential and omitting
the tildes, the equations of motion read

x= „,'„=242(B/B),—BU/Bx,

y =v, , , t = 2'(—B/Bo)v„aU/a—y.
To model antidot arrays we will use the potential

U(x,y) =Up[cos(2')cos(2')] ~, (3)

where P controls the steepness of the antidots. We con-
sider a steep potential [P =64, Fig. 1(a)] and a smooth
potential [P =4, Fig. 1(b)] resembling two distinct exper-
imental situations. The prefactor Uo of the potential is
chosen such that the ratio of the dot diameter at the Fer-
mi energy to the distance of adjacent dots is one-third,
similar to the experiments [5].

Studying first the dynamics in the absence of an elec-
tric field we find orbits enclosing I, 2, 4, 9, 21, and even

more antidots for the steep potential, as well as chaotic
orbits, as shown in Fig. 1(c). For the smooth potential
we find orbits enclosing I and 4 antidots, occurring with

decreasing magnetic fields. This is similar to the hard-
wall billiard model [5] where the potential is constant in

the space between dots. With the analytic potential of
Eq. (3), however, we are also able to understand the na-

ture of the pinning mechanism. For this purpose we in-

vestigate the motion in phase space (x,y, v„y~)by means

of Poincare surfaces of section (y, v, , ) at x(modl) =xp.
A typical section [Fig. 2(a)] exhibits a sea of chaotic
motion and an island of regular motion with an elliptic
fixed point at its center (y =0.5). This point represents
an intersection with a cyclotron-type orbit of radius = 2

revolving around a single antidot at (x,y) =(0,0). Other
unperturbed cyclotron orbits [i.e., for different initial con-
ditions (y, vi, )] have turned into a motion on invariant
tori (KAM tori [11,12]), whose intersections give the
closed loops in the island. Generally such islands are
known to result from nonlinear resonances between the
degrees of freedom [12]. As B is decreased we find a

series of resonances belonging to cyclotronlike orbits that
enclose 1, 2, 4, 9, and 2l antidots. In an electric field in a
hard-wall billiard model, cyclotron orbits would drift un-

til they hit a wall and thus become a chaotic (unpinned)
orbit. The effect of an applied electric field (along x) in
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FIG. 2. (a) Poincare surface of section Iat x(mod I ) 0] for
B/Bp= I in the smooth potential, generated from four diiferent
initial conditions. The island of regular motion represents inter-
sections of invariant tori for cyclotronlike orbits (radius = 2 )
revolving around an antidot at (x,y) (0,0). (b) Randomly
chosen initial conditions y and i, for 5000 orbits started in a
rectangular subregion covering the island and part of the chaot-
ic sea with x =0 for B/Bp= I, and P =4. Lines indicate the in-
tersection of invariant tori. (c) Intersection points of those or-
bits that in an applied electric field return to this region and
thus remain "pinned. "

a =gp;o'. (4)

The pinned orbits do not respond to a weak electric field

(cx"—=0) and the conductivity is due to chaotic orbits only,

a =p„cr"=(I—pp)a'. (5)

Variation of the magnetic field changes the portion p~ of
pinned orbits as well as the conductivity a' of the chaotic
orbits. In previous work Weiss et al. [5] determined p„in

the billiard model, but assumed o' to be the Drude con-
ductivity with an increased scattering rate due to the

the smooth potential is illustrated in Figs. 2(b) and 2(c),
where an ensemble of orbits is generated by 5000 random
initial conditions in a rectangular subregion at x =0 [Fig.
2(b)]. In Fig. 2(c) we plot only those orbits that return
to the plane x =0 within a time interval [t,t+At] at a
later time t»ht, where ht is about twice the cyclotron
period. Orbits started in the chaotic sea have escaped,
whereas orbits in the regular island do not drift away, in

spite of the applied electric field. This is plausible from,
but not directly implied by, the KAM theorem [12].
Thus the pinning mechanism assumed in Ref. [5] is sub-
stantiated by the occurrence of regular islands due to
nonlinear resonances. If a sufficiently strong electric field

is applied, they can be destroyed of course.
A quantitative theory of the magnetoresistance more-

over requires a detailed consideration of regular and

chaotic orbits in the presence of impurity scattering. In
conservative systems with two degrees of freedom the ac-
cessible phase space is the 3D energy surface I separated
into disjunct parts I; by invariant tori. For a micro-
canonical ensemble the conductivity tensor cr then is the
sum of the individual conductivities cx, weighted by their
relative volume in phase space p; = V;/V,
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rellecting disks. It will become clear later that it is essen-

tial to consider the chaotic dynamics in detail to deter-
mine rr" .Lorke, Kotthaus, and Ploog [6] determined the
total a from the Einstein relation, which neglects the pin-

ning of regular orbits.
At low temperatures elastic impurity scattering needs

to be considered. Thereby a pinned orbit may become a
chaotic orbit and vice versa, but the ratio of pinned to
chaotic orbits is not changed and their contributions can
still be summed up as in Eq. (4). In order to incorporate
impurity scattering into the calculation of o' we use clas-
sical linear response theory [13] for the frequency-
dependent conductivity,
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where Ctt(t) =(v;(t)vj(0))& is the velocity correlation
function averaged over phase space, n is the 2D electron
density, kit the Boltzmann constant, and T the tempera-
ture. Assuming statistical independence of the scattering
events the probability that there is no scattering in the
time interval [O, t] is P(t) =exp( —t/r), where r is the
average time between two impurity scatterings. Dividing
the correlation function into a contribution from unper-
turbed orbits, i.e., which do not undergo scattering up to
time t (marked by a tilde), and a contribution from orbits
that scatter at least once (marked by a caret), we find

C;, (t) =P(t) C;,(t)+ [1 —P(t)]C;,(t)

-exp( —t/r )C„(t), (7)

where we have used C~J(t) =0 [14] as impurity scattering
destroys any correlations. According to Eq. (7) the
correlation function factorizes into an exponential decay
due to impurity scattering and the unperturbed deter-
ministic correlation function. From Eqs. (4)-(7) we

finally obtain the conductivity as

cr;, (ar, r ) -(I pp)crrj(—ta, r )
2 oo

=(I —p )" dte' ' '+' "&i.;(t)i (0)&r,
ktrT 4 o t J ~e

(8)

where the correlation function solely includes unper-
turbed chaotic orbits and is easy to obtain numerically.

For a numerical computation of a;~ as a function of 8
we first determine the portion p~ of pinned electrons us-

ing Poincare surfaces of section [15]. For the steep po-
tential it exhibits peaks corresponding to maxima of the
volume of regular regions for orbits enclosing 1, 2, 4, and
9 antidots [Fig. 3(a)l. In the smooth potential there are
peaks for orbits enclosing 1 and 4 antidots [Fig. 3(b)].
Next we compute Cv (t) =(6;(t)it(0))r by numerical in-
tegration of Eq. (2). Choosing a typical experimental
value for the mean scattering time r =4X10 " s we ob-
tain the contribution to the conductivity o' and magne-
toresistance R„'„=o„'/(o', +cr„'r) that is due to the cor-
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FIG. 3. Magnetic field dependence (a), (b) of the portion p„
of pinned orbits, (c),(d) of the magnetoresistance R,", associat-
ed with chaotic correlations, and {e),(f) of the total magne-
toresistance normalized to the zero-field resistance Ro, in the
steep (left) and the smooth (right) potentials. The peaks in (e)
and (f) are marked by the number of antidots that are enclosed
within respective cyclotronlike regular orbits, and (without ad-
justable parameters) agree well with experiments (dotted lines)
by Weisset al. (samples 3 and 1 of Ref. [5]).

relation functions of chaotic orbits. We emphasize that
these results [Figs. 3(c) and 3(d)] clearly deviate from a
Drude ansatz [5], which would yield a magnetoresistance
R'„'„=m/nr,tte constant in 8. R,"„already anticipates
all details of the total magnetoresistance R„„accordingto
Eq. (8) shown in Figs. 3(e) and 3(f). Surprisingly the
magnetoresistance peaks mainly are not caused by the
varying number p„ofpinned (regular) orbits [Figs. 3(a)
and 3(b)], but by correlations within the chaotic sea,
which also show structure rejecting the presence of non-
linear resonances. This is because chaotic orbits in the vi-

cinity of regular islands tend to follow their dynamics for
a long time [10,11]. These numerical results are in good
agreement with experiments by Weiss et al. [5] [dotted
lines in Figs. 3(e) and 3(f)], who varied the electron den-
sity in their samples using the persistent photoconductivi-
ty effect, and thereby varied the steepness of the antidot
potential.

Note that the theory has no adjustable parameters,
since the R scale can be normalized to the zero-field resis-
tance Ro and Bo=(grrh n)'t /ea is determined by the
experimental values of a, m, and n. The values of the dot
diameter and the parameters r and P are not known with
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suScient accuracy. If these were considered adjustable
parameters, the agreement would probably improve.

In the steep potential, corresponding to a sample of
high electron density, peaks occur at magnetic fields
where cyclotronlike orbits enclosing 1, 2, 4, and 9 anti-
dots show up. For the smooth potential, which models a
sample of lower electron density, we find peaks associated
with orbits enclosing 1 and 4 antidots. The latter is shift-
ed to a notably lower magnetic field (peak X), where in a
billiard model a collision-free cyclotron orbit cannot exist
[see, e.g. , Fig. I(d)]. [t thus explains the predominant
extra peak that was found to be inconsistent with a sim-

ple billiard model [5]. Here the peak is explained by an
anomalously reduced cyclotron radius due to deflections
from the smooth superlattice potential [see Fig. 1(d)].
This is possible only by a nonlinear resonance and under-
lines the importance of nonlinear dynamics in a continu-
ous potential. As a consequence of the reduced radius we

predict an augmented cyclotron frequency to show up in

far-infrared spectroscopy [16]. Finally, also the observed
shoulder near 8/Bo=0. 7 is reproduced. It has a similar
origin and belongs to another cyclotronlike orbit with an
anomalously reduced radius enclosing a single antidot.
These results will be presented in more detail elsewhere.

We acknowledge helpful discussions with D. Weiss, M.
L. Roukes, A. Lorke, and J. P. Kotthaus.
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