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The popular local-density approximation neglects long-range correlations which, in the presence of the

rapid rate of change of the electron density at the surface, lead to observable effects. We evaluate the
exchange-correlation potential V„c for the electron gas-vacuum interface from the knowledge of the elec-
tron self-energy Z.c in the GW approximation. The electron-electron correlations built into Z., automati-
cally produce an imagelike surface barrier. Our result for V„c is the basis of a nonlocal density-
functional calculation of the electronic structure of Al(IOO) which yields a Rydberg series of image
states from first principles.

PACS numbers: 73.20.—r, 7 I. I O.+x
The major advances witnessed in the last two decades of the surface environment, are treated exactly within the

in the quantitative computation of ground-state proper- GW approximation [7]. As a consequence we obtain a
ties of condensed matter systems are to a large extent due surface barrier which is imagelike in the vacuum.
to the development of density-functional theory [I] into a Our result for V„, is applied in two contexts. (i) We
powerful tool for dealing with the complicated system of elucidate the physics of the many-body surface barrier
10'-interacting electrons. experienced by a Kohn-Sham (KS) electron (i.e. , an

Now, in the implementation of the density-functional "electron" described by an eigenfunction of the KS equa-
scheme for a metal surface one must in principle account tion) for distances relevant to many experiments [4-6].
for the fact that the very presence of the surface intro- We show that while Coulomb correlation is indeed re-
duces a source of inhomogeneity on a microscopic scale. sponsible for the z limit of the barrier, the position of
However, in the widely used (and, for many purposes, the image plane appropriate for a KS electron is not the
very successful [2]) local-density approximation (LDA) same as the one appropriate for a classical test charge.
[I], this feature of the surface problem is simply ignored (ii) We establish a "nonlocal' relation between V„, and
in the treatment of the crucial electron-electron interac- the electron density which is the basis of a calculation of
tions. the electronic structure of Al(100). The long-range

Because of its neglect of )ong-range correlations, the correlations responsible for the existence of the image tail
LDA gives rise to a surface barrier with a qualitatively of the surface barrier automatically produce a Rydberg
incorrect asymptotic behavior (exponential decay, rather series of image states [4]. These states (and the physics
than the expected inverse power [3]). This failure of the behind them) are beyond the realm of the LDA.
LDA is experimentally relevant; new surface-sensitive In density-functional theory [1,2] the many-body con-
techniques have produced a wealth of data on observables tribution to the self-consistent surface barrier is given by
and processes influenced by the image tail of the surface the exchange-correlation potential V„,(x), defined by the
barrier, such as binding energies and lifetimes of image equation V„(x)=bE„,[n]/8n(x), where E„,[n] is the ex-
potential-bound surface states [4], tunneling currents in change and correlation energy functional [I], and n(x) is
the scanning-tunneling microscope [5], resonant-tun- the electron number density. The exact form of E„,[n] is
neling rates for ion-surface collisions [6], etc. unknown; several functional forms have been contrived in

In this Letter we report a first-principles evaluation of order to enforce the presence of an image tail in an ad
the exchange-correlation potential (V„,) for the electron hoe way [8-10].
gas-vacuum interface. We proceed by solving an exact In our work we take a different approach, i.e., we do
integral equation relating V„, and the electron self-ener- not invoke the above definition at all; rather, we define
gy. The main physical ingredients of the self-energy, V„,(x) through the following exact integral equation,
namely, its energy dependence and long-range correla- which relates it to the electron self-energy Z„,(x,x'~E) of
tions, and their interplay with the extreme inhomogeneity

(
many-body perturbation theory [11,12]:

J d xi Vxc(xi)J dgEo(x, x~lE)g(xi, x(E) =g"d xl& d xp& dEgp(x, xllE)&xc(xl, x2IE)g(x2, x~E), (I)
where g is the quasiparticle Green's function, and go is the Green s function for the KS Hamiltonian. Note that while
V„,- is by definition a local, energy-independent potential, and go describes the propagation of a KS electron in the pres-
ence of this potential, a "real" electron (quasiparticle) propagates (via g) in the presence of the nonlocal, energy-
dependent self-energy.

The state-of-the-art first-principles computation of the electron self-energy in solids [13,14] is the GW approximation
due to Hedin [7],

~«(xi, xzlE) = g"dE'e' "g(x~,x2]E+E')W(x~, x2IE'), (2)2R.
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which is the first term in an expansion of the self-energy
in powers of the dynamically screened electron-electron
interaction W(x~, x2(E), defined by the equation (written
symbolically) [7]

W=( +igT(, (3)

0.0

where i is the bare Coulomb interaction, and gT is the
time-ordered density response function, which satisfies
the integral equation [7] gT =/+/AT, where g is the ir-
reducible polarizability. I n the present work we set

g =g, where g is electron-hole pair bubble. Thus we

neglect, e.g. , excitonic effects (ladder diagrams).
A few technical details about our method are in order.

(i) Since the Green's function go depends on V„„Eq. (I )
poses a self-consistency problem, which we solved by
iteration. Wave functions and energy eigenvalues with
which to compute "updated" Z„„. and go are obtained by
feeding the solution of Eq. (1) into the KS equation.
[One or two iterations are required for full convergence
of the tail of the potential, the near-surface region requir-
ing just a single solution. ] (ii) Following standard prac-
tice [12], we have set go=g throughout. (iii) The time-
ordered response function gT is expressed in terms of its
retarded counterpart gR via a Lehmann representation
[7]. gR is computed for a jellium slab without imposing
any restrictions on the rate of spatial change of the elec
tron density at the surface [15]. (The slab thickness used
corresponds to four or more Fermi wavelengths. ) The
full energy dependence of gR was kept; we did not intro-
duce a plasmon-pole approximation [14] because at the
surface (unlike the bulk), Landau damping plays a role
even for small wave vectors —a reflection of the break-
down of translational invariance in the direction normal
to the surface. (iv) The energy integral involving gR is

performed (by Gaussian quadrature) upon distorting the
contour so that it runs over the imaginary axis. (v) The
electron density decays to zero in the vacuum, and this
renders the kernel of Eq. (1) singular. Furthermore, the

integral equation is homogeneous, which makes it numer-
ically very unstable. Use of the singular-value decompo-
sition method proved effective [16].

Figure 1 shows a representative solution of Eq. (1) for
(the electron-gas parameter) rr =3.93. That solution is
compared with the corresponding LDA potential [17] and
with the image potential V; (z) = —e /4(z —zo), where
z is the coordinate normal to the surface and zo is the po-
sition of the effective image plane [18,19]. The key
feature of our result is that V„,(z) becomes imagelike
outside the surface. This is an important improvement
over LDA in the context of experiments whose interpreta-
tion is linked to the existence of the image tail of the bar-
rier [4-6].

The physics of the surface barrier is best discussed with
reference to Fig. 2, in which we show the solutions of Eq.
(1) that obtain from the use of the Hartree-Fock (ZHt')
and Coulomb-correlation (Z,.) self-energies, which origi-
nate, respectively, from the first and second terms in Eq.
(3). These solutions are labeled V„(ZHq) and V, (Z, ).
(Z„=ZHF+Z, ; in Fig. 2 we have set Zon =Z„, ) It is ap-
parent that the classical-image limit of the surface bar-
rier, V„,.(z) —e /4z, is due to the Coulomb-correlation
effect present in Z,-. Thus this limit is "universal, "

being
the same for a KS electron and for a classical test charge.
[This conclusion confirms earlier statements of Almbladh
and von Barth [20] and Sham [21]; it disagrees with the
conclusions of Harbola and Sahni [22], who have equated
V„,.(z) for large z with the work performed against the
bare-exchange hole [23].]

From the potentials shown in Fig. 2 we conclude that
the position of the effective image plane includes a
significant contribution from the exchange process [which
is why the full V„„(z) merges with V;~(z) much closer to
the surface than the correlation-only potential V,. does].
In fact, we have shown numerically that V„(z) —a/z,
the coefficient a giving the contribution to zo from ex-
change. Clearly then, the image-plane position that
governs the barrier that self binds a KS ele-ctron differs
from its counterpart for a test charge Thus, the . zo for a
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FIG. l. V„,-(z) at a simple metal surface for r, =3.93 (for
which A. 1.. =12.9 a.u.). The solid curve is the solution of Eq. (1)
with use of the GW approximation for X,„., and the dotted curve
is the corresponding LDA potential [17]. The dashed curve is

the image potential V; (z) = —e'-/4(z —zo).
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FIG. 2. Solution of Eq. (l) for three approximations for the

self-energy: X&»z (Hartree-Fock), X, (correlation), and
(sum of the previous two).
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KS electron is not (contrary to statements made in the
literature [9]) the one that arises in the context of the
linear response of the surface to an external, uniform
electric field [3].

Quantitatively we have that, e.g., for r, =2.07, the
image-plane position extracted from the image tail of V„,
[18] is zo=0.72+'O. l a.u. (measured from the jellium
edge), while from linear response in LDA-GIV [17],
zo= 1.49 a.u. [24]. The nonlocal effects alter the linear-

response value very little. These issues, including the
effects of the crystal structure, will be discussed in detail
elsewhere [25].

Starting from the position of the first Friedel peak of
the density, and moving out into the vacuum, we have

constructed, by a point-by-point "tabulation" of the solu-
tion of Eq (I.) and the electron density self-consistent
with it, a one-to-one relation between V„, and n to be
symbolized as V„,(r, ;n' ). The appeal of this relation,
which derives implicitly from a functional E„,[n] contain-
ing the physics of the nonlocal self-energy, is that Eq. (I)
has been solved once and for all for each value of r, . The
same V„,(z) shown in Fig. I can now be obtained directly
(as we have checked explicitly) from the self-consistent
solution of the KS equation in the presence of our
V„,(r, ;n' ) relation (matched to the LDA at the first
Friedel peak). This represents an enormous simplifica-
tion relative to solving Eq. (I).

A detailed parametrization of our V„,(r„n'~ ) relation
will be presented elsewhere for r, values in the metallic
range [25]. Here we report its first application to a
density-functional calculation of the electronic structure
of Al(100), performed in a periodic-slab geometry, with

use of a plane-wave basis set, and ab initio norm-

(a)

conserving pseudopotentials [26]. Since the new physics
included in our method is related to the existence of im-
age states whose wave functions are localized many atom-
ic units outside the surface, a large vacuum gap between
consecutive slabs must be utilized. Furthermore, in order
to separate the members of the Rydberg series of image
states, the physical slab must be at least 25 atomic layers
thick. Both requirements translate into the use of a very
large unit cell [I.n the self-consistency procedure for this
three-dimensional calculation the "nonlocal" V„, is
matched to V„„.in the LDA in the vicinity of the nominal
jellium edge. The precise point where the matching is
done is not important, a consequence of the result (see
Fig. I) that the nonlocal and LDA potentials are very
close to each other over a sizable interval about the jelli-
um edge. )

In Fig. 3 we show the squares of three of the eigenfunc-
tions at I (averaged over the plane of the surface). The
energy position of the "conventional" surface state [3(c)]
is in very good agreement with the photoemission obser-
vations of Levinson, Greuter, and Plummer [271. The
states at 4.42 and 4.64 eY above FF owe their existence
to the image tail of the barrier. This statement is sub-
stantiated in Fig. 4, which shows a weighted density of
states (DOS) near the vacuum level, for both nonlocal
and LDA [17] calculations. Both calculations give the
same results for states such as that in Fig. 3(c), but the
LDA entirely misses the Rydberg series. We emphasize
that eigenstates of the form of those in Figs. 3(a) and
3(b) occur over a finite energy range; they correspond to
resonances [Note . how state (c) decays monotonically
into the bulk, unlike the resonances. ] Finally, we note
that although no experimental data have been reported
for the image states of Al(100), the binding energy of the
n = I resonance (Fig. 4) compares favorably with the lo-
cation of the image-state peak (-0.45 eV) in the in-
verse-photoemission data of Heskett et al. [28] for
AI( I I I ).

The direct solution of Eq. (I) for a real metal will be
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FIG. 3. Squares of three of the eigenfunctions for Al(100)
(averaged over the surface plane) at I, obtained in the presence
of the nonlocal effects discussed in the text. The energy eigen-
values are measured from the Fermi level; the vacuum level is
at 4.82 eV. (a) n=2 image state (resonance). (b) n=l image
state (resonance). (c) Surface state in the gap. Circles: posi-
tions of the atomic planes.
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FIG. 4. Weighted DOS near the vacuum level for Al(IOO) at
I . (See text. ) The solid curves correspond to the image-state
resonances. The dashed curves are the corresponding LDA re-
sults ll71. Energies are measured from the vacuum level.
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attempted in future work. Such a calculation would pro-
duce a V„, in which the (beyond-the-LDA) "bulk"
many-body eAects of the electronic inhomogeneity due to
the ion cores would be treated together with the eAects
investigated in the present work, which are inherent to
the presence of the surface [10]. (Since the LDA is
known to hold qualitatively in the bulk, the former eAects
are not as dramatic as the ones discussed in this work. )

In summary, we have evaluated from first principles
the surface barrier for a KS electron at the electron gas
surface from the knowledge of the electron self-energy in

the GW approximation. We have developed a scheme for
carrying out nonlocal density-functional calculations with
the same ease as LDA-based calculations. This scheme
includes the combined eA'ects of long-range electron-
electron correlations and the rapid rate of change of the
electron density at the surface. The scheme has been
tested successfully for Al(100); it yields a Rydberg series
of image states on the same footing with conventional
(crystal-termination) surface states. A similar calcula-
tion is under way for Pd(111) [29].
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