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We present results of isothermal molecular-dynamics calculations for Na~ microclusters. The Born-
Oppenheimer dynamics is calculated using a many-body potential developed by Tomanek and co-
workers. We analyzed the system in a temperature range from 25 to 1500 K. The Na& cluster seems to
undergo two phase transitions, a solid-glass transition at = 100 K, and a melting transition at T = 800
K.

PACS numbers: 64.70.Dv, 64.70.Pf, 82.20.Fd, 82.20.Wt

The great interest in sodium microclusters [I] warrants
a detailed understanding of their thermal behavior. In
contrast to argon clusters, the thermal properties of alkali
clusters do not seem to be a reflection of the underlying
cluster geometry. The coexistence of solid-liquid phases
in argon clusters was a property characteristic of certain
numbers of atoms, and the addition or removal of a single
atom resulted in a totally diff'erent phase diagram [2].
On the other hand, the aspect of the phase diagram for
sodium clusters with different numbers of particles is

qualitatively similar [3]. This is one of the reasons why
we shall limit the present analysis to Naz, and defer fur-
ther details of this and other systems to future publica-
tions [3]. This cluster has been studied extensively, both
experimentally and theoretically [I]. One of the main
reasons is its magic character (electronic shell closure),
which leads to an enhanced stability and therefore to a
higher production rate. So far, a detailed study of the

thermal properties of alkali clusters, matching in detail
the studies of argon clusters, is missing. In the case of
noble gases, the interaction between atoms is relatively
weak and also pairwise in character. This is not the case
any more for metallic clusters, where the strong delocali-
zation of the valence electrons leads to an eff'ective Born-
Oppenheimer interaction which is both relatively strong
and many body in character. As we show belo~, these
new features of the interaction lead to qualitatively new

thermal behavior and a different phase diagram.
Ideally, an explicit treatment of ions and electrons in

the framework of an ab initio molecular-dynamics study
would be desirable [4]. However, the prohibitive amount
of computation required suggests an implicit treatment of
the electrons. The strong delocalization of the valence
electrons in alkali clusters could be imitated by a many-
body potential [5,6], used previously in the description of
both bulk and clusters properties. The potential energy V

of the sodium microcluster has the form [5,61
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The input parameters are [6] the bulk cohesive energy
E,-„h= —1.113 eV, the effective bulk coordination num-
ber ZI, =10.4, the nearest-neighbor distance in the bulk
r0=3.66 A, p =9, and q =3. The parameters of this in-
teraction were derived from a tight-binding model, which
reproduces reasonably well the binding characteristics of
bulk sodium [2]. In spite of its simplicity, this interaction
seems to describe surface properties extremely well [6].
Since clusters are mostly surface, one can reasonably ex-
pect that our results are not too far off the mark. A re-
cent explicit treatment of the electrons at finite tempera-
tures, within the framework of a tight-binding Hamiltoni-
an for Cu clusters [7], points to a remarkable stability of
the electronic shell structure even at relatively high tem-
peratures. This result, expected from general physical ar-
guments, lends support to the use at finite temperatures
of the effective Born-Oppenheimer interaction derived at
T=O (at least for magic clusters). In particular, the in-
teraction used here seems to describe reasonably well the
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I structure of the Naq ground state.
The canonical ensemble can be generated either in a

standard Monte Carlo technique or better in the hybrid
Monte Carlo method [8]. We have chosen to use our im-
proved Nose-Hoover type of molecular dynamics (MD)
[9], which showed better convergence properties in the
case of the LY model than did the hybrid Monte Carlo
method [IO]. The coupling to a thermostat at absolute
temperature T (ktt =I) was described by the following
equations of motion [5,6]:
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for the coordinates (x;,y;,z;) and momenta (p„;,p, .;,p-;)
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of each atom i =1, . . . , %, and
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for the pseudofriction coeflicients ((„g,, (-) and

(g, , g, , , g-). This type of coupling does not afl'ect the
center-of-mass motion. We have introduced a pair of
pseudofriction coe%cients for each Cartesian component
in order to avoid the conservation of the total angular
momentum (or its direction) and to ensure ergodicity and

a higher rate of exploration of the cluster internal phase
space. The constants a, a,P, P control the energy ex-

change rate between the cluster and the bath. They were
chosen to optimize the convergence of the procedure by

varying them with T. The equations of motion were in-

tegrated using a Hamming predictor-corrector method of
fourth order. The time step was chosen between

0. 15 x 10 " and 2 x 10 " s, depending on temperature
(smaller steps for higher T) and 10 configurations were

generated at each temperature. This resulted in relative-

ly long time simulations, between 0.12 and 2 ns, which al-

lowed us to extract rather detailed information. In order
to avoid evaporation at high T we have added a linear re-

storing force at r;; ~ 22 A.
A very sensitive "phase transition gauge" is the dimen-

sionless bond-length fluctuation [2]

N(N —
I );(I

At low temperatures, the atoms oscillate with small am-

plitudes around their equilibrium positions. At a temper-
ature of about 100 K, the bond-length fluctuation jumps
from almost 0 to about 0.3 (see Fig. I), similar to the
case of argon clusters [2] and other metal clusters [5].
At these temperatures the atoms are oscillating most of
the time with small amplitudes around the equilibrium

position and once in a while some of them jump to other

equilibria. A similar phenomenon was observed for the

gold clusters [I I] and this phase was characterized as a

"glassy" or "molten state" of the cluster. At tempera-
tures corresponding to the second "phase transition, "
there is another dramatic increase in the bond-length

fluctuation to a value of about 0.5. The cluster becomes
fluidlike and all the atoms move across the entire cluster.
At the same time there is a significant evaporation proba-

bility.
%'e monitored the total kinetic energy of the cluster

mostly as a check of our simulation procedure, since

quantities like the average kinetic energy, kinetic specific
heat, and the shape of the kinetic-energy distribution it-

self can be predicted beforehand. The kinetic energy can

be separated into two nontrivial contributions however:

rotational and vibrational energies [12]. In the whole
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FIG. 1. The temperature dependence of the bond-length
Auctuation 6 in a Na& microcluster. This quantity displays dis-
tinct jumps at the two phase transitions.
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F'IG. 2. (a) The temperature dependence of the average po-

tential energy. The dashed lines are guides to the eye and give

an idea about the slopes of the average potential energy in

different temperature intervals. (b) The potential-energy con-

tribution to the specific heat.

range of temperatures studied, the average rotational en-

ergy and the corresponding contribution to the specific
heat are, within statistical errors, the same as for a rigid
body, in spite of the floppiness of the cluster [12]. For
temperatures below -35 K the cluster behaves like an

ensemble of harmonic oscillators. The potential-energy
contribution to the specific heat is essentially that given

by the equipartition formula for independent oscillators,
i.e., C~& = (3N —6)/2 =9. The configuration of the
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ground state is very similar to the Dzd isomer [13],corre-
sponding to a prolate rotor. At much higher tempera-
tures, T= 800 K, there is another much better defined

jump in the specific heat, which can be seen in the plot of
the average potential energy as a function of temperature
as well (Fig. 2).

The distribution of the potential energy at a given tem-
perature is P(E) =p(E)exp( —E/T)/Z(T), where Z(T)
is the partition function and p(E) is the density of states.
Since our calculation determines the energy distribution
directly, we can determine the density of states p(E)
from the computed P(E), up to an arbitrary normaliza-
tion constant. This constant can be computed in a variety
of ways: either using a harmonic approximation around
the ground state or by the adiabatic switching method
[14]. Patching together different pieces obtained at
different T, we defined p(E) over a large interval and

subsequently determined the partition function, entropy,
average energy, and specific heat as functions of T. We
found that the curvature of log~op(E) becomes positive
for some energies (see Fig. 3), a behavior characteristic
only of small systems [15]. This behavior of the density
of states as a function of energy is responsible for the oc-
currence of a birnodal energy distribution at certain tem-
peratures (see inset of Fig. 3), and the so-called coex-
istence of phases [2].

For each spatial configuration one can compute the
principal moments of inertia I] & I2~ I3~ 0. They pro-
vide average information about the shape and size of the
cluster; see Fig. 4. The three principal (geometrical) mo-

ments of inertia can be used to compute P (which charac-
terizes the degree of nonsphericity) and y (which gives a
measure of the triaxiality) parameters [3]. We have

chosen the following definition of these parameters:

(4k —3)~
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where r =(g;=~r;/IV) ' (g;=~r; =0) is the rms radius
of the matter distribution. The condition that the semi-
minor axis a =(r /3) [1 —2Psin(@+rr/6)] ~ 0 defines
the region of allowed values for P and y. At low temper-
atures, the cluster has a rather well-defined rms radius.
The cluster is essentially incompressible, but can deform
quite easily (see Fig. 4), which is a consequence of the s
character of the bonding. At higher temperatures the
rms radius of the cluster has a quite broad distribution
and at the same time its average value rises sharply
around 800 K. Above 800 K, the cluster has a cigarlike
shape with a sizable triaxial deformation. The smallest
moment of inertia has the biggest fluctuations. This
means that atoms evaporate most willingly from the sides
of the cigar.

In conclusion, the partial results presented here suggest
that the phase diagram of sodium clusters, in spite of
many similarities with Lennard-Jones clusters, is more
complicated. In this case, there are two clearly distin-
guishable "phase transitions, " one from a solid to a glass
or molten state and the other one to a fluid state. Both
energetic and geometric properties of the cluster undergo
significant changes with temperature. It is reasonable to
conclude that mainly the many-body character of the in-
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FIG. 3. The density of states p(E) (potential energy only)
extracted from isothermal M D calculations and a bimodal
potential-energy distribution for Na& at T =820 K.

FIG. 4. The temperature dependence of the averaged three
principal moments of inertia, the rms radius together with its
width, and the shape parameters P and y. The widths of the
corresponding distributions (covariance) are plotted as error
bars.
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teraction among the sodium atoms is responsible for the
marked differences with Lennard-Jones clusters. A more
detailed exposure of the present results along with prop-
erties of other sodium clusters will be presented elsewhere
[3].
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