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Spectroscopy of Pendular States: The Use of Molecular Complexes in Achieving Orientation
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Infrared-laser-molecular-beam spectroscopy has been used to observe strongly bound pendular states
of the linear hydrogen cyanide trimer. The spectrum undergoes a dramatic evolution from that of a free
rotor at zero electric field, with its characteristic P and R branch structure, to that indicative of a pendu-
lum bound by a large electric field (corresponding to to=pEl8 =365). The result is an unprecedented
degree of orientation for a linear molecule. The generality of using weakly bound complexes to orient
even nonpolar molecules is discussed.

PACS numbers: 33.20.Ea, 33.55.Be, 34.50.Pi

Despite the fact that steric effects are of fundamental
importance in essentially every branch of chemistry, ex-
periments designed to measure them under single-
collision conditions are still problematic. The difficulties
arise from the fact that, to obtain information of this

type, the reagents, which are spread over a distribution of
rotational states, must be oriented in some way prior to
the collision. To date, there are still no completely gen-
eral methods available for achieving this goal. For the
case of a polar symmetric top, some degree of orientation
can be achieved using electric focusing fields, as first
demonstrated by Bernstein and co-workers [1,2] and
Brooks and Jones [3]. Indeed, a large number of studies
on the steric effects associated with symmetric tops have
been carried out in both crossed molecular-beam experi-
ments [2-7] and gas-surface collisions [8-11]. As dis-
cussed by Estler and Zare [12], polarized laser excitation
can be used to align molecules, owing to the fact that
they are preferentially excited if the electric transition
moment is aligned with the laser electric-field direction.
This method has been applied in various forms by a num-
ber of groups for studying steric effects [13-18].

Very recently there has been considerable interest in

using large, uniform electric fields to orient molecules by
virtue of the fact that an electric dipole experiences a
torque in the field. Normally this torque is considered
small with respect to the molecular rotational energy
[19],such that the corresponding effect on the rotational
wave functions, and hence the molecu)e's average orienta-
tion, is negligible. However, as pointed out by Hersch-
bach and co-workers [20-22] and Loesch and Remscheid
[23], the effect can be greatly enhanced if the molecules
are cooled to low rotational temperatures using a free jet
expansion. For systems with large dipole moments and
small rotational constants, experimentally realizable elec-
tric fields can give rise to significant orientation. These
two groups have done extensive calculations that show the
feasibility of this technique, and Loesch and Remscheid
[23] have used this method for orienting CH3l to examine
steric effects in the reaction K+CH3I KI+CH3.
Friedrich and Herschbach [22] have reported laser-
induced fluorescence experiments on ICI at fields up to 20
kVjcm and an assignment of the resulting Stark spectrum
confirms that, at these field strengths, the lowest rotation-

al states are beginning to become pendular. To date,
however, there have been no spectroscopic measurements
on systems in the limit where the interaction with the
electric field completely dominates over the rotational en-

ergy, such that the molecules are strongly bound in these
pendular states and highly oriented with the field.

We report here a high-resolution infrared study of the
pendular states of the linear HCN trimer [24,25], which
is ideally suited to this type of study owing to its large di-
pole moment (10.6 D [25]) and small rotational constant
(0.0156 cm '). For this system we are able to make

p E large in comparison with BJ(J+I) for all of the
states populated in the molecular beam. As the electric
field is increased the infrared spectrum evolves from the
normal P and R branch structure of a linear molecule
into a rather confused spectrum, due to the lifting of the

m~ degeneracies. At even higher fields the spectrum
simplifies again when all of the populated states become
essentially harmonically bound by the field. In this high-
field limit many of the states become degenerate again
and the spectrum is easily assigned in terms of the selec-
tion rules associated with these harmonic-oscillator-like
states.

The experimental apparatus used in the present study
has been described in detail elsewhere [26-28]. It is
based upon the use of the optothermal detection tech-
nique [29], which provides high-sensitivity infrared spec-
tra of free-jet-cooled molecules. The gas of interest is
expanded from a nozzle source, collimated by a skimmer
to form a molecular beam, and detected by a liquid-
helium-cooled bolometer detector. An F-center laser is
used to vibrationally excite molecules in the beam while
the bolometer monitors the resulting change in the
molecular-beam energy. This change can result from ei-
ther the vibrationally heating of the molecules in the
beam or the depletion of the beam due to photodissocia-
tion of the excited species, which leads to recoil of the
fragments out of the line of sight of the bolometer. In the
present setup, the laser interacts with the molecular beam
between two Stark electrodes, which act as both a paral-
lel reflection cell for increasing the number of laser-
molecular-beam crossings [30] and a means for applying
a uniform electric field to the interaction volume. As
shown in Fig. 1 the laser electric-field vector is approxi-
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applied field they are, on average, more orthogonal to the
laser polarization direction, causing the transition intensi-
ties to decrease. Under these high-field conditions, the
lowest-energy pendular state of the trimer has an rms de-
viation from the applied field direction, which to the au-
thors' knowledge is the highest degree of orientation yet
achieved in the gas phase for any system. The fact that
these lowest pendular states become well resolved at high
fields means that we can use laser probing techniques to
both determine and precisely control the degree of orien-
tation in these systems.

In the present study we have used high-resolution in-

frared spectroscopy to observe the onset of pendular be-
havior and have achieved an unprecedented degree of
orientation. Work is presently under way to obtain com-
plete assignments of the pendular states for both the tri-
mer and the dimer of HCN. In this way, we will be able
to quantify the degree of orientation that can be achieved
in these systems. The apparatus is being modified so that
even higher field strengths can be obtained and parallel
polarization experiments can be carried out to more

clearly observe the most highly oriented pendular states.
We wish to stress here that weakly bound molecular

complexes may provide the key to studying steric effects
for a wide range of molecules. The ability to form com-
plexes containing the reagents of interest allows us to
tailor the values of the dipole moment and rotational con-
stant so that the pendular alignment technique can be
used. On the other hand, the intermolecular interactions
are so weak that, at least at high collision energies, they
should not aAect the chemistry of interest. Complexes
may also be used to orient nonpolar molecules by simply

forming a complex of the desired structure with a polar
partner. The range of partners and resulting structures is

so large that this should give a great deal of flexibility in

achieving the desired orientation. Difficulties remain,
however, such as how to eliminate the contributions to
the chemistry from the largely unoriented monomer

species present in the molecular beam. Nevertheless, the

present study clearly shows that the pendular states of
weakly bound complexes can provide us with a simple
and completely general approach for achieving highly
oriented species in a molecular beam.
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