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%e study the isospin-dependent component of the eAective nucleon-nucleon interaction which causes
the dT=I (p,p') and (p, n) reactions off nuclei. It is shown that, at intermediate energies, the
modification to the impulse approximation comes from the g-matrix-type correction and the rearrange-
ment term. They are numerically estimated with the isospin-asymmetric nuclear-matter reaction matrix
approach. The isobaric-analog transitions Ca(p, n) Se and Ca(p, n) Sc are analyzed.
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The nucleon direct reaction of a few hundred MeV
projectile energy has become one of the preferred tools to
extract nuclear structure information, complementing re-
actions with electromagnetic probes. Its success crucially
depends on a good command of the effective nucleon-
nucleon interaction utilized in the calculations based on
the distorted-wave Born approximation (DWBA). From
the theoretical point of view, there is a possibility of per-
forming a convergent calculation of the Watson expan-
sion [I] or its variants [2,3], since the impulse approxima-
tion is expected to be a reasonable starting point at these
energies. In the practical analysis with currently avail-
able computational resources, ho~ever, the treatment
based on the density dependen-t effective interaction [4,51
seems to be the only workable scheme to handle the
correction to the impulse approximation or the medium
correction.

For elastic scattering, the optical-model potential ob-
tained by folding the Brueckner reaction matrix (g ma-
trix) [6] is known to represent the leading terms in the
Watson expansion [7], and the g-matrix approach has
been reasonably successful in describing the elastic-
scattering experiments [4,5,8,9]. For inelastic scattering,
we have shown for the simplest case of the isoscalar
natural-parity transitions that the effective interaction is
the sum of the g matrix and the rearrangement term ex-
pressible as the density derivative of the g matrix [10,11].
Attempts to describe experimental data along this line
have been pursued in recent years, and have met with
great success. The set of density-dependent effective in-
teractions constructed by Kelly and co-workers [12-14]
has been proven quantitatively accurate and practically
useful in the description of the elastic scattering and the
isoscalar natural-parity excitations. In this background,
we believe it quite urgent to identify the medium correc-
tion in other components of the effective interaction than
the spin-isospin-independent part. That would enable us
to take full advantage of the nucleon projectile with its
capacity to excite a variety of nuclear modes not accessi-
ble by other probes.

Although the isobaric-analog excitation [15] has been

one of the best-studied nuclear excitation modes, the
isospin-dependent part of the effective interaction has
been given relatively little theoretical attention [16]. This
unsatisfactory state of affairs needs to be altered before
any systematic empirical analysis can be performed. In
this Letter, we intend to identify the leading medium
correction to the isospin-dependent component of the
effective nucleon-nucleon interaction which induces the
isovector nuclear excitations. In the formulation, the g
matrix appears in isospin-asymmetric nuclear matter,
where the proton Fermi momentum differs from the one
for the neutron. This is necessary even for isospin-
symmetric nuclei in the evaluation of the rearrangement
term for the isovector transitions. We report the result of
a numerical example at the incident energy E~ 150
MeV. It is applied to the isobaric-analog transitions

Ca(p, n) Sc and Ca(p, n) sSc at E„ 135 MeV. We
hope that this work will revitalize the microscopic
analysis of all the components of the effective interaction
for intermediate-energy nucleon scattering.

The g matrix in isospin-asymmetric nuclear matter
satisfies the Bethe-Goldstone equation formally identical
to the one in symmetric nuclear matter, namely,

g =v+ vG egg,
where v is the bare two-nucleon interaction, Go is the free
two-nucleon propagator, and Q is the Pauli exclusion
operator. The self-energy correction to the propagator
which plays a minor role at sufficiently high energy is
neglected. The difference of proton and neutron densities
p„and p„generates the isoveetor component in g in ad-
dition to the isoscalar component present in symmetric
nuclear matter [17]. As a result, the effective interaction

g obtains four independent components gTT specified by
the total isospin T of the two interacting nucleons and its
projection T, . Featuring the tensor property in the iso-
spin space, we write the g matrix in the form

g=g +g'ri rq+g'(ri+r2)+g&JP/3[rixr2)t, (2)

where s l and r q are the isospin operators of two interact-
ing nucleons. The four coefficients in Eq. (2) can be writ-
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ten in terms of gTT, as

g 4 (gii+gio+gi —i+goo),

g ~& (g 1 I +glo+gl —
I 3goo),

g 4 (gii gi —i),
g =-,' (g —2g o+g, , ).

(3a)

(3b)

(3d)

In the isospin-symmetric limit, g and g~ naturally disap-
pear. From Eqs. (3a) to (3d), one recognizes that g, g',
and g~ are invariant with respect to the exchange of pro-
tons and neutrons in the medium p~ p„, while g
changes its sign. These properties put restrictions on the
possible form of the density dependence of each term. A
better view is obtained by defining the isoscalar density
p'=—p„+p„and the isovector density p'=pp —p„. The
exchange of proton and neutron is now represented by

p
' —p'. At the isospin-symmetric limit, therefore, the

following odd functions of p' disappear:

o 8 r 8
(4a)

Bp |Ip Bp

Taking the leading density dependence of g and g~, one
obtains

Utt =ptl g +p', g +pt g +pp', p

which shows that the transition potential can be obtained
from the eAective interaction

0~ r
~in ~in + ~in & ]

' & 2 . (10)

~here the isospin-independent and -dependent corn-
ponents, v;„and v„, are given by

eAective interaction for elastic scattering.
For inelastic scattering, both through diagrammatical

analysis of Watson expansion and the macroscopic collec-
tive excitation model, one can equate the inelastic transi-
tion potential with the density derivative of the optical-
model potential U [10,11]. Assuming that the transition
of the target nucleus is described by the isoscalar and iso-
vector transition densities pt', and pt,', one can express the
transition potential Ut, which describes inelastic scatter-
ing as

8
Utr ptl U +ptr

Bp' tip

This yields, for N =Z nuclei (p'=0), the expression

g =P g and gt'= —,
' (p')'

P
P

P
(4b)

and

s ~I o

olp'
(I la)

We consider the elastic and inelastic scattering in or-
der. The optical-model potential U of a nucleon in

isospin-asymmetric nuclear matter is given by folding the
interaction g with the asymmetric nuclear-matter density.
It is convenient to split the resultant optical-model poten-
tial into isoscalar and isovector parts a la Lane as [18]

U =U'+U'~-, (s)

where each term is given by

U'=g'p'+g p'= g'p'

and

(6a)

U'=g'p'+(g'+g )p'=g'p'+g'p'

,, g+g P .
P

(6b)

0 s ~ c~el=g + p', g +g &] &2
Bp

0= ~el+ ~el&] &2 ~ (7)

with the nuclear densities p' and p'. One can therefore
regard the interaction vd defined by Eq. (7) as the

In the derivation of U' and U', we have dropped all terms
that are of second or higher orders in powers of p'. In
the last line of Eq. (6b), the relation Eq. (4b) is used.
The above expressions show that the optical-model poten-
tial U is obtained by folding

(I lb)~ =g'+p'
tip

The second term in Eq. (I la) is the so-called rearrange-
ment term for the isoscalar transition. Its relation to the
full multiple-scattering theory [3] is diagrammatically
analyzed in Ref. [10]. Equation (I lb) is one of the main
results of this Letter. The analysis of its microscopic con-
tent similar to the case of Eq. (I la) is possible though
slightly cumbersome. Its second term is analogous to the
one in Eq. (I la), and is no less remarkable since it shows

up at p'=0 despite that g' itself vanishes at this limit.
For N&Z nuclei, there are corrections to Eqs. (7), (I la),
and (I lb). They can be safely neglected in the case of
N =Z, since they are quantities of order p'. Comparing
Eq. (7) with Eq. (I lb), one finds

(12)

for the isospin-dependent eA'ective interactions. Notice
that the rearrangement factor which connects the elastic
and inelastic eAective interactions in the isospin-

independent channel [10] is absent here. We stress that
this does not mean the absence of the rearrangement
term. It is achieved by natural but formal redefinition of
the elastic effective interaction, Eq. (7). In principle,
therefore, with Eq. (12), the isospin-dependent empirical
interactions can be constructed from the combined
analysis of the elastic scattering and the h, T =1 inelastic
and charge-exchange reactions of N =Z nuclei in a
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manner similar to that for the isospin-independent coun-
terpart [12-14].

%e now turn to the numerical assessment of the medi-
um correction to the isospin-dependent component of the
effective interaction. The detailed description of the tech-
nique to solve the isospin-asymmetric Bethe-Goldstone
equation, Eq. (1), and the full numerical results will be
published elsewhere. The method is a straightforward ex-
tension of the one developed for the solution of the sym-
metric nuclear-matter g matrix without the "angle-
average" approximation [19]. Here, we show the rele-
vant result of an example of such a calculation. At the
projectile energy of E~ 150 MeV, the Reid soft core po-
tential [20] as the input free two-nucleon interaction, we
obtain the following numbers for the volume integrals (or
the strength of the interaction in zero-range approxima-
tion) of isospin-dependent components of the g matrix in

the leading order of nuclear densities:

g' = [[22+75ij+ [—24 —53ijp'/pp]

+ [[8+22ij+ [17—17ijp'/pp]L S,
g'=[[6+38ijp'/ppl+ [[—1+ lijp'/pp]L S, (14)

where the numbers are in units of MeV fm, and pp=0. 17
fm 3 is the nuclear-matter saturation density. The g
matrices of Eqs. (13) and (14) include both the density
dependence arising from the Pauli blocking and the one
induced by the nonlocality (see Ref. [19]). The density
dependence of g' of Eq. (13) is comparable to the previ-
ous results [21,22] in sign and order, but is stronger in

magnitude. The inclusion of the nonlocality, which has
been omitted in earlier g-matrix calculations, accounts
for a substantial part of the stronger density dependence
found here, but more careful cross checking will be need-
ed. The antisymmetrization is already taken into account
in Eqs. (13) and (14), and only their direct amplitudes
are to be included in DWBA calculations. One observes
that in the effective interaction v;„(or equivalently in
v i), the density dependence of g' tends to cancel that of
g', especially in the imaginary part of the central force.
More to the point, these two density-dependent correc-
tions are of the same order. This clearly displays that
partial inclusion of the medium correction, only with the

g matrix, for example, cannot be very meaningful.
In order to show how the density-dependent effective

interactions, Eqs. (13) and (14), work in inelastic scatter-
ing, we show the result of DWBA calculations [23] for
the isobaric-analog transitions Ca(p, n ) Sc and

Ca(p, n) Sc at E„=135MeV. To facilitate the calcu-
lation, we adopt the following two approximations: First,
we take the empirical optical-model potential of
Schwandt et al. [24] instead of calculating it microscopi-
cally. Second, we replace the density-independent part of
Eq. (13) by the Yukawa parametrization of the free
two-nucleon scattering matrix by Franey and Love [25]
at E~ =140 MeV (FL140). The tensor part of the FL140
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FIG. 1. The differential cross section for the reaction
Ca(p, n) Sc The. dashed, dot-dashed, and solid lines, respec-

tively, are the results of the impulse approximation, g matrix,
and the full calculation.
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FIG. 2. The differential cross section for the reaction
"Ca(p, n) "Sc. See the caption of Fig. l.

interaction is used without additional density dependence.
The density-dependent portion of the above effective in-
teractions is treated as a Yukawa force of very short
range. The calculated differential cross sections are
shown in Figs. 1 and 2 where the dashed lines correspond
to the impulse approximation with the FL140 interaction,
the dot-dashed lines, to the results with only g' included,
and the solid lines, to the results with the full medium
correction included. We make the following observation:
First, the impulse calculations without the density depen-
dence slightly overestimate the experimental cross sec-
tions [26]. Second, g-matrix calculations lower the cross
section, but undershoot the data. Finally, with both
medium corrections (g matrix and rearrangement term)
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included, the calculations hit the experimental data points
strikingly well. A warning is due, however, to the
overemphasis on the favorable comparison with the ex-
perimental numbers at this point, since the uncertainty of
the isospin-dependent component of the free scattering
matrix is already very large. Also, the approximations in

the current calculation leave large space for further im-
provements. Rather, these calculations are to be looked
at as examples to support our basic point; that is, for mi-
croscopic calculations of the proton reactions, the medi-
um modification should be and can be estimated with the
proper inclusion of the rearrangement term.
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