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Existence and Stability of Semilocal Strings
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It has recently been shown that a certain model field theory [which gives the Abelian Higgs model a

global SU(2) symmetry by duplicating the scalar sector] possesses static finite-energy vortex solutions

despite having a simply connected vacuum manifold. It is demonstrated here that they are stable or un-

stable according to whether m, , is less than or greater than m, , (where m, and m, . are the masses of the

Higgs and vector particles, respectively). At the boundary, m, =m, , there is a two-parameter family of
solutions all saturating a Bogomol nyi bound. The relationship of the vortices to CP" a-model lumps is

pointed out.

PACS numbers: 11.17.+y, 11.15.Ex, 11.15.Kc, 98.80.Cq

Topological defects are well known to exist in theories
with spontaneously broken symmetries, whether global or
local [I]. We are motivated to study such objects by
their ability to survive for long periods after the phase
transition by which they are produced in the very early
Universe [2]. In particular, local and global vortices [3],
global monopoles [4], and global texture [5] are all

thought to be able to produce eA'ects observable in the
Universe today, and thereby hold the potential for provid-
ing direct information about physics at the unification
scale.

Recently, Vachaspati and Achucarro [6] have exam-
ined a simple field-theory model which combines global
and local symmetries in an interesting way. It consists of
a complex doublet of scalar fields @ with only the overall
phase gauged. The Lagrangian is therefore

X =(D„@) (D"Ci) ——.
'

A, (@t@—
ri ) ——,

' F„,F"",

where D„=|)„t'eA„. The s—ymmetries of this "extended"
Abelian Higgs model are a global SU(2) and a local
U(l). The potential has an even larger symmetry: The
real and imaginary parts of the two components of @
(call them Pi and tW)q) form a vector under an O(4) group
of transformations. A natural generalization is to make
@ an N-vector of SU(N), in which case the symmetry
group of the potential is O(2N). At zero temperature the
scalar field has an expectation value ~(@~~ =ri, and the
vacuum manifold M is isomorphic to O(2N)/O(2N
—1)=S '. Vachaspati and Achucarro showed [6] for
N =2 that vortex solutions exist, which they termed
"semilocal" strings, although the usual topological condi-
tion on M, that it be multiply connected, is not satisfied.
This raises the question of whether these solutions are in

fact stable.
This Letter is concerned with examining the stability of

these solutions. Numerical methods give very clear evi-
dence that when P=A/e & I the vortices are stable. This
stability disappears when p ) I, and the magnetic flux in
the vortex tends to spread out to infinity. Perhaps the
most interesting case is P = I, where it is possible to prove
that there is a two-parameter family of solutions saturat-

ing the Bogomol'nyi [7] bound on the energy E=2trr12,
which have values of ~~4~( at the vortex core between 0
and g. There is a close similarity between these vortices
and the instantons in CP ' o models [8]. The radial
dependence of the magnetic field departs radically from
the usual e "' behavior found in Nielsen-Olesen vor-
tices [9] and becomes a power law ro/r, with ro arbi-
trary. Thus it would appear that although there is a
Higgs mechanism operating to give the vector boson a
mass, the magnetic fields cease to be confined as P be-
comes greater than 1. Natural units trt =c= 1 shall be
used throughout, while I and j shall take values in [1,2]
when used as subscripts or superscripts.

The problem is to assess the stability of the two-
dimensional static finite-energy solutions to the equations
of motion resulting from the Lagrangian (I). This means
minimizing the energy functional

(2)

where B= 'etc'i.IThe finite-energy condition means
that every term in (2) must vanish as r ee. The van-
ishing of the potential term requires that the image of the
circle at spatial infinity @ must lie in M. When M is
not simply connected it is clear from the continuity of the
field that for those maps @whose r limit is not con-
tractible in M there must be some region in the plane
where tIi(x') leaves M. Here there is energy density asso-
ciated with an object usually described as a vortex or a
string. In the present case, tri(M) vanishes so the argu-
ment just given fails. However, for finite energy the co-
variant derivative term in (2) must vanish at infinity as
well, which means that + is just a gauge transforma-
tion:

(8) =exp ier„d8'Ae tI» (0).
The continuity of N tells us that its phase change at
infinity is 2' with n an integer. This integer is a topo-
logical invariant of finite-energy field configurations, and
it measures the number of times that A winds around
the gauge orbit which passes through & (0).
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Following Bogomol'nyi [7] and Vachaspati and Achucarro [6], Eq. (2) can be rewritten in an enlightening way.
After an integration by parts we find

8 =2 nlnlrI +„d x4 ID&+ ie~D @I + —' [8+ e(@t@—rl')] + —,
'

(p —l)e (@t@— ) ]

(D; ~ie;~D')@=0, 8~e(4 4 —
tI ) =0. (s)

When P& I (& I), this value forms a lower (upper)
bound, since the last term is positive (negative) semi-
defin ite.

Vachaspati and Achucarro showed that there are solu-
tions of the form 4=f(g)e' @~, where g'=erix' are di-
mensionless coordinates, and g =I('I. In this case the

where the signs are taken according to the sign of n.
Thus in the special case P = I, the energy is minimized at
the value 2xlnlri when the fields satisfy the first-order
equations

field equations reduce to exactly those for the ordinary
Nielsen-Olesen vortex [9]. They did not, however, check
the stability of these solutions to small perturbations.
The most general one-vortex ansatz which maintains the
expected cylindrical symmetry is

4=f(&)e' @~+g(&)e'"' &q, 8; =e;,& a(&)/e&, (6)

with II+ill =g=ll+2ll and Ni@2=0. The orthogo»lity
of +~ and Nq ensures that the effect of a spatial rotation
can be removed from both components by a suitable
SU(2) && U(l) symmetry transformation. We shall see
that it is sufficient to examine the m =0 case only, and so
with ansatz (6) the energy functional becomes

8 =2zg g (f') + (g') + (a') + f + g~+ lj(f +g——
I ) 2 dg, (7)

f I, g 0, a I, as r

If go=—g(0)&0 then we depart from the usual Nielsen-
Olesen vortex solution. Qualitatively, it would seem that
for large P, there should be a significant decrease in the
energy if ge0 in the core of the string where f departs
from 1. Conversely, as P 0, the cost in gradient energy

might seem to outweigh any small energy reduction
afforded by a nonzero g. I n fact, it is possible to show
that when P & I, there are no minimum-energy vortices
of finite core radius. The proof proceeds by constructing
a one-parameter family of field configurations ~hose en-

ergy tends to the Bogomol'nyi limit as the value of the
parameter is taken to infinity. The field configurations
are

(2
g= 1+

(10)

2'+2
4o 4o

for which the energy is E=2nrl (I+ I/3(o). Thus as

go —~, E tends to the Bogomol'nyi bound. Any truly
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while the Bogomol'nyi equations are

f'+ [(a —
I )/(]f =0, g'+ (a/()g =0,

a'+ ((f'+ g
-' —

I ) =0.
Let us first consider the solutions away from the

Bogomol'nyi limit of P= 1. The problem is to minimize
(7) subject to the following boundary conditions:

f=O, g'=0, a=0, at r=0,

stable solution therefore must saturate this bound, and we

see from (4) that when P & I saturation can only happen
if B=0 everywhere. This is inconsistent with the total
flux being 2z/e. The possibility remains of a metastable
solution, but numerical work described next seems to pre-
clude it.

I have investigated the minima of (7) using a relaxa-
tion method described in Ref. [10]. I have also checked
the stability of the Nielsen-Olesen-type solutions to sma11

perturbations in g, by looking numerically for negative-
eigenvalue solutions to the Schrodinger-like equation

+ +P(f —
I ) y=ro y, (I I)1 d d a

4 d4

where p is a small perturbation around g =0. For reasons
of space I will merely state some results, and details of
the method will be presented elsewhere [11]. For
P= 100, 30, 10, and 3, I found negative eigenvalues,
which approached zero from below as P decreased to-
wards unity. For P= I, 0.3, O. l, 0.03, and 0.01 no nega-
tive eigenvalues were found. For perturbations with an-

gular quantum number m [see Eq. (6)], the second term
in (11) is replaced by (a —m) /( . Note then that the
"potential" term in (I I) for m & I is everywhere larger
than that for m =1, and therefore if the lowest m = I ei-

genvalue is positive then so are all m & I eigenvalues.
The stability of the solution towards m =1 perturbations
is guaranteed, since small fluctuations in f have an eigen-
value equation identical to (11). It follows that checking
the stability of the solution towards m =0 perturbations
is sufficient for assuring its complete stability.

It would therefore appear that the Nielsen-Olesen-type
vortices are stable in this model only if P & 1. When
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P & I they are unstable towards forming a condensate in

the core, which seems to be able to spread out to infinity.
A definite statement cannot be given on this point, be-
cause there may be a metastable solution with finite core
radius. However, using the relaxation code, I was unable
to find one which converged convincingly.

We now turn to the special case P= I, where minimiz-

ing E is equivalent to solving the Bogomol nyi equations
(8). Any solution to these equations satisfying the cor-
rect boundary conditions (9), and this includes the Niel-
sen-Oiesen-type string, is guaranteed to be at an absolute
minimum of the energy, and therefore there can be no
perturbations with negative eigenvalues. However, there
is a zero-eigenvalue solution, which is

y =ynexp — a ((')g' ' d('

This indicates that there is a degeneracy in the solutions
to the Bogomol'nyi equations, for this zero mode is

present for any g(g) that is a solution, not just g =0. It
remains to show that such solutions exist.

The problem with Eqs. (8) is that they are nonauto-
nomous, and therefore many of the useful theorems about
first-order ordinary differential equations do not hold, in

particular each point (f,g,a) does not lie on a unique tra-
jectory [12]. It is therefore convenient to change these
equations into autonomous ones. One helpful point to
note is that the equations for f and g are not independent.
In fact, g may be replaced by f(ii/(, reducing the three
equations (8) to two. To make them autonomous we
define a new variable z =tan '((/(a), a new function
p=(f +g )'/, and finally another function z whose
solution is sins. This brings the equations to the form

dp z —a da 2 z(l —p )
(I 2) I/2 '

dz (I 2) 3/2

(12)
—( I 2) I/2

It is required to show that there exists a solution to
these equations which starts at point p=(po, 0,0) and
passes through q =(1,1, 1) for any gn and some
pp C (0, I ). As far as the physical solutions to these equa-
tions are concerned, the region of interest is the open
cube C defined by p, a, z C (0, 1), and its surface Z. The
proof proceeds by showing that all paths X~, starting at p
must leave the cube through a certain subset S&Z which
includes the point a. The geometry of S is such that re-
moving q divides it into two disjoint pieces S~ and S2'iq.
One then shows that according to whether pp is near 0 or
1, X~AX is in different pieces. The continuity of X~ then
guarantees that there exists some pp E (0, 1) for which
X~ includes q. Note that q is a critical point.

We first define S. Since z' and a" are both positive at
p, the path must commence by entering the cube C.
Furthermore, a' and z' are positive everywhere in C, so
X~ cannot pass through either of the faces z =0 or a =Q.

Neither can it reach z =1, for a' and p' diverge there.
The paths therefore must either disappear to infinity or
reach the point q. Two other regions are now excluded:
p=1 with a & z and p=0 with a (z, because p' is

directed into the cube. The region p=O, a ~ z can also
be excluded by examining the behavior of trajectories
when p is small. For these there is an approximate solu-
tion for a, namely, a(r) = —,

' (titan r+A, where 3 is an

integration constant. Thus p can be solved for:

p=psecr(cotr) "exp( ——,
'

&o tan r) . (13)

Trajectories therefore approach p =0 but cannot reach
it. As pp 0 these approximate solutions hold good
everywhere and A vanishes. It follows also that for
su%ciently small pp, the path leaves C through the face
a = I at tanr =J2/(ii or p =pa(I+2/go) '/ exp[ —(I
+gp)/2], which is in the region S~ =[p,a, z:p, z
E (0, 1),a = I[. It remains to show that for po sufliciently

close to I the path exits somewhere in the region
S2 = [p, a,z:p = l, z E (0, I ],a ~ z I. We proceed by ex-
panding around r =0, near which point

p-—p, [I+ —,
' [I ——,

'
g,'(I —p,2)]r 2J.

(14)

Thus for pp close to 1 the path reaches p= 1 and leaves C
at r =2(1 —pii)/pii. Now, it is well known that paths
which are solutions of autonomous ordinary differential
equations cannot cross or end, except at critical points
[12]. Therefore, as pii is increased away from small
values, the line defined by the points Xp0 must pass
smoothly from Sl into S2 as a function of pp. The only
way that this is possible while remaining in Si US2 is
through the critical point q. We have now shown that
there exists a solution to the Bogomol'nyi equations (8)
with pa&0 for any (o&0. Furthermore, since @2 has an
arbitrary phase a once 4i is fixed, vortex solutions are ac-
tually labeled by a complex number [13] (the special case
(ii=0 corresponds to the Nielsen-Olesen-type vortex, for
which solutions are already known to exist). Note also
that if the inequality pn & I —2/(ii is not satisfied, p' is
negative everywhere in C, since a is always greater than
z . Thus any path that reaches q must satisfy this in-
equality, which shows that as (z ~, pii l. Thus in
this limit the scalar field remains in the vacuum manifold
everywhere. To summarize, when P= 1 there is a family
of vortex solutions labeled by a complex number (iie", all
of which have energy 2xg .

The asymptotic behavior of these solutions is very
different from that of the Nielsen-Olesen vortex, for
which [9] f(g)=l —c~g '/ exp( —J2P() and a(()=l—c2(' exp( —J2(). Up to and including terms of
fourth degree in g—=gii/(, it is found for the vortex in the
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extended Abelian Higgs models that at large distances,

f=i —-Z +(-. —
4o ')X'. g=z(I —-Z'),

(is)

The resulting power-law decrease in the magnetic field at
infinity is a significant departure from the usual exponen-
tial decay associated with the confinement of magnetic
flux. Furthermore, the width of the flux tube is complete-
ly undetermined, instead of being the Compton wave-
length of the vector particle.

In this respect, the long-distance properties of the vor-
tices in extended Abelian Higgs models with N scalar
fields are closely similar to those of instantons in the
two-dimensional CP ' o model [8]. The CP ' model
is a theory of an N-dimensional complex scalar field n

constrained to have unit norm, whose Lagrangian is sim-

ply X = ~D„n~, where D„=8„—iA„The. vector field A„
has no derivative terms and acts purely to give the theory
a local U(1) gauge invariance. Solving for A„one finds
A„=in* |)„n. It is well known that in two dimensions
the instantons of the CP ' a model have arbitrary size
[8]. Defining a complex coordinate z =x+iy, the general
CP ' instanton is

u(z —zo)/w+ vn=
(I+ iz —zoi'/iwi') '" '

where ~u~ =I =~v~, u* v=0, and w is an arbitrary
scale parameter. Note that as ~z

—
zo~ ~, n e"'s u.

Furthermore ~u* n~ and ~v* n~ are equal to f and g, re-

spectively in Eqs. (10) and so the kinship to the vortex is

clear. The existence of instantons in 2D CP ' o models
arises from the nontriviality of x2 of the target manifold.
In three space dimensions this implies the existence of a
sort of global monopole in the extended Abelian Higgs
models, but a rather unusual one, because the target
manifold is constructed by identifying the orbits of the
U(l) gauge group. Thus the images of nontrivial map-

pings from the 2-plane into CP ' are disks whose boun-

daries lie on a U(1) gauge orbit. This means that global
monopoles must be the termini of gauge vortices. When
N =2 the cr model is equivalent to the O(3) cx model [8],
since CP'=S, and a species of global texture can be ex-

pected since tr3(S ) =Z. Details will be given in a
separate publication [11].

In conclusion, this combination of local and global to-
pological defects may find application in a cosmological
context, where strings, global monopoles, and global tex-
ture all provide promising theories of structure formation
[3-5]. A model which combines all three may prove ir-
resistible.
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sions of the model presented in Ref. [I], and I thank Ian
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by SERC, United Kingdom.
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