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We discuss the spectra of quantized chaotic billiards from the point of view of scattering theory. We
show that the spectral and the resonance density functions both fluctuate about a common mean. A
semiclassical treatment explains this in terms of classical scattering trajectories and periodic orbits of the
Poincare scattering map. This formalism is used to interpret recent experiments where the spectra of
chaotic cavities were measured by microwave scattering.
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A discrete spectrum is a property of a closed system.
However, the process of measuring the spectrum of a
bounded system consists of coupling the system to an

external continuum. Thus, for the purpose of measure-
ment, the closed system is turned into a scattering system.
For example, the spectrum of an H atom in a static mag-
netic field is interrogated by scattering light and measur-

ing resonant absorption [1], and the spectrum of a cavity
can be measured by measuring the reflectivity of mi-

crowaves coupled to it via a coaxial cable [2]. This sim-

ple observation was the motivation for our attempt to
study spectra of classically chaotic systems from the point
of view of scattering theory. The first results of this en-
deavor are presented in this Letter, where we discuss in

particular the spectra of two-dimensional chaotic bil-
liards. We show that, in the short-wave (semiclassical)
limit, a secular function Z "(E) (the function whose

zeros coincide with the spectrum of the closed system)
can be constructed using scattering information exclusive-

ly. The study of this function gives important relations
between the spectral number function N(E), which
counts the number of eigenenergies up to the energy E,
and a corresponding resonance number function Ntt(E),
which counts the number of scattering resonances up to
the energy E. We show that the diA'erence between these
two functions is an oscillating function with a vanishing
mean. This allows us to derive Weyl's formula for the
mean spectral density, from a scattering point of view. A
further application of the semiclassical approximation al-
lows us to write Z "(E) in terms of classical trajectories,
and, in particular, in terms of periodic orbits of the Poin-
care scattering map (PSM) [3]. We then establish a link
between the well-known Gutzwiller trace formula [4] and
a recent semiclassical result for the resonance density
function [5,6]. In doing so we connect the theory of
chaotic scattering with the theory of spectral fluctuations
in chaotic bound systems. We finally illustrate the
theoretical results by some numerical data, and use them
to discuss actual experiments.

Consider a two-dimensional billiard defined by a closed
curve Z. The eigenfunctions 9't, (r) are solutions of the
wave equation, subject to Dirichlet boundary conditions
on Z. To turn this into a scattering problem we remove a

where L =[kD/tr], x and y denote the longitudinal and
transverse directions, respectively, k is the wave number
(E =k ltt /2m), and k„=[k —(trn/D) ] 'I is the longi-
tudinal wave number. Evanescent solutions correspond to
modes with n) L. At x ~, where the measurement
takes place, the evanescent term vanishes. The S matrix
is defined as the ratio of the incoming to outgoing modes
at infinity: B(E)=S(E)A(E).

We now make the approximation that one is allowed to
neglect the contributions of the evanescent modes even at
x=0. This is consistent with the semiclassical approxi-
mation, as evanescent modes cannot be represented by
classical trajectories which impinge on o with real angles
of incidence. This approximation holds for L» 1 and for
energies not too close to the threshold energies, where
modes which were previously evanescent become propa-
gating. The S matrix then represents the constraints that
the Dirichlet boundary conditions on X —o. impose on the
wave function at o. In order to close the billiard we must
also require that +, (r) vanish on cr. Neglecting the
contribution of evanescent modes, this implies A(E)
= —B(E)= —S(E)A(E) on o, which can be fulfilled
only if

Z"'(E)—:det[l+S(E)] =0. (2)

Z'" (E) is therefore th'e semiclassical secular function,
which has zeros at the eigenenergies of the billiard, ex-
pressed as a function of the unitary scattering matrix S.

small interval o from Z, and replace it by an infinite tube
or waveguide, which runs along the normal to Z at 0. We
assume that the transverse dimension of the tube, D, is

much smaller than the radius of curvature at cr, so that o
is well approximated by a straight line.

The wave function in the waveguide can be written in

terms of the normal modes as

L

+,, (x,y) = g [At(E)e ' '"+Bt(E)e' '"] sin

r

+$ Q(E)I=| ki'+I D

1992 The American Physical Society 1255



VOLUME 68, NUMBER 9 PH YSICAL REVIEW LETTERS 2 MARCH 1992

A more rigorous derivation of (2) and a systematic dis-
cussion of the role played by the evanescent modes will be
presented elsewhere.

Special attention should be given to the vicinity of the
threshold energies E(=(trlh, /D) /2m, where the dimen-
sion of S(E) increases by l, and S(E) has a branch point
when considered as a function of complex E. To avoid
the complications which the threshold introduces, we

shall allow the energies to vary only between two suc-
cessive thresholds. If the area of the billiard, 8, is

sufficiently large, a large number of eigenenergies(- —. ttLA/D ) will be found in this interval. This allows

a meaningful discussion of the spectral fluctuations. Us-
ing the methods developed by Weidenmiiller [7] one can
then generalize the discussion to the entire real energy
axis. This is, however, deferred to a later publication.

Z"'(E) can be written in terms of the eigenphases
0((E) of S(E),

l I.
1Z "(E)=exp i g 0((E—) 2' + cos 0((—E)

(=I 2 (=1 2 j

(3)

Only the last term can vanish for real values of E. There-
fore, the number of eigenenergies in the interval (E(,E)
is given by

E

N (E) —N(E( ) = N(E')
i f, = ——lim Im ln g cos 8((E—'+i e)E 1 . 1

-0 (=] 2 EI

——lim Imln[Z "(E'+ie)]+ g 9((E')1 1

R' t. =0 2Ã (=]
(4)

where N(E) is the spectral counting function.
To interpret the above result, consider the Wigner time

delay [8,9], defined as

r(E) = TrSt =— g 8((E) .
as ca

iL aE L aE (=(
(s)

Near an isolated pole of the S matrix, r (E) is a
Lorentzian whose area is normalized to 2zh/L and whose

width is the resonance width. This can easily be seen

from the pole expansion of S. The function

E
NR(E) =

~
dE'r(E')

2xh "EL (6)

is therefore the resonance counting function: It increases
smoothly when a pole (resonance) is traversed [10]. By
inserting (5) into (6) and using (4) we then get

N(E) NR(E) = ———lim Im lnZ "(E+(e) .
1

E e-+0
(7)

We would like to evaluate the energy average of this

quantity. The function Z "(E) has zeros on the real E
axis, at the positions of the billiard eigenvalues, and poles
below the real axis, at the poles of S(E). It therefore has

neither poles nor zeros above the real axis. So, an in-

tegral of (8) along any contour in the upper half E plane
vanishes. S(E+ie) decays exponentially as e + ~,
and so, for large enough t.',

Differentiating (7) with respect to E we get the difference
between the level density d(E) and the "resonance densi-
ty" dR(E) =(L/2nh)r(E):

((E)=d(E) dR(E) = ———lim Im InZ "(E+ie) .
1

(re-0 aE

for some (I) 0. This implies that smoothing (8) with a

Lorentzian of width e vanishes as exp( —r(e). In other
words,

(d(E)) —(d„(E))—0. (I 0)

We see that the spectral and resonance densities possess a
common mean, and the right-hand side of (8) measures
the fluctuations in the diA'erence between the two func-
tions. It should be emphasized that d(E) is a genuine

spectral density, while dR(E) is a smoothed density func-
tion. Because of this, N(E) is a genuine staircase func-

tion, while NR(E) is a smoothed staircase.
To illustrate these results we have calculated the two

number functions for the billiard shape shown in the inset

of Fig. 1. The results are shown as a function of the wave

number k and not of E for the sake of convenience. The
transformation to functions of E is straightforward. We
show N(k), NR(k), and r(k) for L =6, where the reso-

nances overlap. The two functions wind around each oth-

er, as implied by (10). We should emphasize that in the

present calculation the spectrum calculated from the

zeros of Z "(k) and the exact spectrum differ by less

than 10 times the mean level spacing. This astonish-

ingly good fit may be due to the special features of our

model, and in particular the smooth matching between

the billiard and the waveguide.
The mean value of the Wigner time delay r(E) has

been shown [I I] to approach the value y
' in the semi-

classical (h 0, L ~) limit, where y is the classical

escape rate from the chaotic scatterer. Simple geometri-

cal considerations give us y = Dv/(rA, where A is the area

of the billiard, i is the velocity, and D is the size of the

opening. Recalling that

B -- . B

BE
lnZ "(E+ie) TrS —exp( —((e),

BE
mi0
7th
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FIG. I. The time delay (solid curve), spectral number func-
tion N(k) (staircase), and the resonance number function
NR(k) (dashed line) for the case of six open channels (L =6),
as functions of the wave number. Inset: The geometry of the
closed billiard and the scattering system. The waveguide con-
necting to the billiard is also drawn, in dashed lines.

where the sum is over primitive periodic orbits (p.p.o.) of
the PSM and repetitions r. n, is the period, h+, is the
action, and M, is the stability matrix of the primitive or-
bit s. The Maslov indices associated with orbit s have

here been incorporated into @,.
An orbit of the PSM is constructed by following a par-

ticle trajectory in the billiard, starting on the window cr at
position y and transverse momentum p,„until it again
reaches a, at position y' and transverse momentum p~.
The particle is then reinjected into the cavity by reversing

the sign of the longitudinal momentum p„, while keeping
the position y and transverse momentum p, , constant.
Note that this corresponds to a specular reflection of the
particle at rr T.he PSM is then the mapping (y,pr)
~(y', p,'). A periodic orbit of period n of the PSM
therefore corresponds to a periodic orbit of the closed bil-
liard, which hits the window o n times. The phase asso-
ciated with the periodic orbit of the billiard is just &5„

plus an additional Maslov phase of n for each reflection
of the particle from cr. Using this fact and incorporating
(14) into (13) we get the following expression:

and substituting in (10), we get

(d(E)) (dR(E)) =(L/2rrh)(r(E)) mA/2rrh, (12)
—

I

~gg(E ) g s iA,

p.o. G a
~
det (I —M, )

~

' (is)

I tI ( —I )"
Z TrS".

i 8E &-1 n
(i 3)

Semiclassically, it is possible to express TrS" in terms of
periodic orbits of the Poincare scattering map, as was
shown in detail in [14,15]. Thus,

( —I)"
T S„ 1 ir(e, +n, n)TrS"= Z,

t.p.o.b). idet(I —M,")
i

'

rn, n

(14)

which is just the leading term in Weyl's formula for the
average level density of a planar billiard in the semiclassi-
cal limit. This result also gives a quantum meaning to
the classical escape rate y, namely, h y is proportional to
the mean level spacing.

Relation (12) was derived in the L» I limit. However,
in the low L limit it holds approximately, with an error of
up to a factor of I+ I/L. Equation (12) emphasizes an
interesting relation between the resonance width, which is
of the order of h y, and the mean resonance separation,
which is —(2rr/L )h y. One can see that resonances over-

lap for sufficiently high L, while they remain (mostly)
isolated for low L values. Thus, Ericson fluctuations [12]
are expected only in the semiclassical domain (L»1)
even when the underlying classical scattering is chaotic
[i 3].

Our main purpose in this work is to discuss the spectral
fluctuations in the semiclassical regime. This is achieved

by substituting (2) in (8), which yields

P'(E) =—. Indet[S(E)+I] =— Trln[S(E)+I]1 1

i BE i E

where the action @, is now the action of the periodic orbit
s of the billiard, and the orbit time is t, =h 84,,/dE.

The summation in (15) is now over all periodic orbits

of the closed billiard which hit o' at least once This ex-.

pression is highly reminiscent of the Gutzwiller trace for-
mula [16] for the level density of a billiard in the semi-
classical limit. It is in fact a Gutzwiller sum over a sub
set of the periodic orbits of the billiard. However, in a
chaotic billiard almost all orbits which are long enough
eventually reach o, and in fact the topological entropy of
this subset is equal to the topological entropy of the full-
billiard periodic-orbit set. Therefore, this sum is beset
by the same convergence problems which plague the
Gutzwiller sum. It was shown in [5] (see also [17]) that
the resonance density function can be expressed as a sum
over all trapped periodic orbits of the scattering system.
These are just all periodic orbits which never hit rr, and
are the complement of the set of all periodic orbits which
do hit it. Hence (8) and (15) express a reordering of the
Gutzwiller sum: d(E) (sum over all periodic orbits)
equals dR(E) (sum over periodic orbits which miss o)
plus g"(E) (sum over periodic orbits which hit rr) This.
observation provides an a posteriori justification to our
statement that (2) is a semiclassical secular function.
Indeed, starting from (2) we derived (15), which was
shown to be a natural reordering of the Gutzwiller sum
for d(E).

We can connect the above results to the experimental
determination of spectra of chaotic billiards by means of
microwave absorption in the following way. It has been
shown [18] that the reflectivity of a weakly absorbing
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cavity can be written as

I (E) =—Tr[St(E+ia)S(E+ia)]1

L

8el(E)= exp —2—g
L (=] alE

=exp[ —2ar(E)],

(i 6)

Z"'(E) =det[S(E) —Sp(E)], (i7)

where Sp(E) depends on the way in which we choose to
close our scattering system. Sp(E) would usually be
chosen so that the sytsem would be closed along a coordi-
nate surface, in the coordinate basis we find most con-
venient. In our case, the system was closed by imposing
Dirichlet boundary conditions along the x =0 line in the
waveguide. Consequently Sp(E) = —I, giving us the con-
dition det[S(E)+I] 0. If instead we impose Neumann
boundary conditions, we get Sp(E) =I, and (2) becomes
det[S(E) —I] =0.

The theory presented here bears some likeness to
Bogomolny's recent formulation of the spectral secular
function in terms of the semiclassically unitary operator
analog of a Poincare map [19]. In the present formalism,
we use the 5 matrix which is always unitary and which is

the quantum-mechanical analog of the Poincare scatter-

where a(& y stands for the effective absorption rate.
Measuring the reAectivity therefore amounts to measur-
ing the resonance density r(E), which is a smooth func-
tion composed of Lorentzians centered at the resonance
energies. As long as the resonances are well separated,
r(E) approximates the spectral density. However, even

in such cases some of the resonances may acquire a large
width. These resonances contribute to the smooth back-
ground of r(E), and do not show up as well-defined

peaks. This may provide a partial explanation for
Stockmann's failure to identify some 15% of the eigenen-
ergies in his experiment [2] (the finite frequency resolu-
tion can also account for some missing values, as he men-
tions). In contrast to that, knowledge of the scattering
amplitudes enables one to extract information concerning
the eigenvalues of the system, even in the regime of high-

ly overlapping resonances, at least within the context of
the semiclassical approximation.

In summary, we would like to make the following com-
ments. The present formalism can be generalized to oth-
er systems, which differ either in the form of the scatter-
ing potential or in the nature of the free propagation.
However, care must be taken to write Z "(E) in the prop-
er form. The most general form for Z "(E) is

ing map. The analytical properties of Z "(E) are similar
to those of Bogomolny's secular function, since in both
cases they arise from the special form of (7). Finally, we
note that the connection made between the spectral densi-
ty and the scattering matrix indicates a possible link be-
tween the statistical properties of the spectral functions
and the distribution of the eigenphases of the S matrix.
We are currently investigating this connection.
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