Pressure and Field Dependence of Superconductivity in Rb₃C₆₀

G. Sparn and J. D. Thompson

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

R. L. Whetten, S.-M. Huang, R. B. Kaner, and F. Diederich

Department of Chemistry and Biochemistry and Solid State Science Center, University of California, Los Angeles, California 90024-1569

G. Grüner and K. Holczer^(a)

Department of Physics and Solid State Science Center, University of California, Los Angeles, California 90024-1569 (Received 20 September 1991; revised manuscript received 19 November 1991)

Direct measurements of the pressure dependence of the superconducting transition temperature T_c for single-phase Rb₃C₆₀ provide for the first time substantial evidence that T_c in A_3C_{60} compounds may be a universal function of the lattice constant (inter-C₆₀ spacing). Determination of the lower (H_{c1}) and upper (H_{c2}) critical fields, and consequently the superconducting penetration depth and coherence length, is also reported. Compared to K₃C₆₀, the measured quantities are consistent with a 15% larger electronic-state density in Rb₃C₆₀ arising from a greater inter-C₆₀ spacing in this compound.

PACS numbers: 74.40.+k, 74.30.Ci

The discovery [1-3] that alkali-buckminsterfullerene compounds form a new family of superconductors has stimulated substantial theoretical and experimental interest. Systematic studies [3-7] of potassium compounds have established that superconductivity appears only in the stoichiometric K_3C_{60} composition [3], which forms an fcc structure [6]. The transition temperature, $T_c = 19.3$ K, decreases strongly with increasing pressure dT_c/dP = -7.8 K/GPa [5]. Magnetization measurements [4] have shown K_3C_{60} to be an extreme type-II superconductor with a London penetration depth $\lambda_L = 240$ nm and a superconducting coherence length $\xi_0 = 2.6$ nm. The temperature dependence of the lower critical field $H_{c1}(T)$ and of $\lambda_L(T)$ determined [7] by muon-spin rotation strongly suggests a singlet, s wave pairing. Until now, little has been reported regarding the second member of the family, the superconducting Rb₃C₆₀ compound, beyond its transition temperature, $T_c = 29.6$ K [2,3].

Samples were prepared from a solid-phase reaction of high-purity C_{60} powder reacted with Rb vapor in a way similar to that reported for K_3C_{60} . As described in detail elsewhere [8], the major difference lies in the kinetics of the solid-gas reaction, which in the case of Rb results in a strong tendency toward segregation of different stoichiometric compounds, independent of the initial ratio of materials used. The sample used in the present work was prepared from a starting composition of $Rb_{2.5}C_{60}$, heated in vacuum at 200 °C for 22 h, and subsequently annealed under He atmosphere over several days at the same temperature. This procedure led to a fractional shielding diamagnetism of ca. 25% on powder, determined relative to a Nb bulk reference sample. X-ray diffraction revealed an fcc crystal structure identical to that of K_3C_{60} but with lattice constant 1.4425 nm, compared to 1.4240 nm for K_3C_{60} [8]. The powder was pressed at 4 MPa to make a pellet of 3 mm diam and 0.7 mm thickness, and then sintered at 200°C for 6 h. Pressing also results in

the appearance of bulk shielding (macroscopic supercurrent) at a somewhat lower temperature than T_c , similar to that described earlier in the case of pressed K₃C₆₀ [5].

Pressure and $H_{c2}(T)$ measurements were performed on a 2.57-mg portion cut from the Rb_3C_{60} pellet sealed under 0.1 MPa He gas in a Pyrex capillary. For reasons to be discussed, $H_{c1}(T)$ was determined on a powder sample also sealed with He in Pyrex. In making measurements with a Quantum Design SOUID magnetometer, care was taken to ensure that the sample was not exposed to a field gradient larger than 0.03% of the applied field. The pressure dependence of T_c was measured inductively at a frequency of 457 Hz, using a self-clamping pressure cell [9] with Fluorinert FC-75 as the hydrostatic pressure medium [5]. For these measurements the sample was removed from the Pyrex capillary and immersed directly into the pressure medium. Pressure within the cell was determined from the variation in T_c of a high-purity lead reference.

Figure 1 shows results of ac susceptibility measurements at a series of pressures between ambient pressure and P = 1.9 GPa. In the inset are shown typical susceptibility curves, each exhibiting in addition to the shieldingdiamagnetism onset at T_c , a second break in slope at $T^* < T_c$, where the macroscopic shielding current is established, i.e., the intergranular coherence appears, as will be described in full detail [10]. A strongly negative pressure dependence is found for both T_c and T^* , as displayed in the figure, from which an initial slope $(dT_c/dP)_{P=0} = -9.7$ K/GPa is inferred, an even larger value than that reported for K_3C_{60} (see Table I) [5]. At the highest pressure attempted, T_c is near 13 K, less than half its ambient pressure value. The data points were taken for both increasing and decreasing pressures, demonstrating that the entire variation as a function of pressure is reversible. Additionally, a slight bump is ob-

FIG. 1. Inset: Magnetic susceptibility curves $\chi(T;P)$ of Rb₃C₆₀ obtained under the indicated pressures at nominal zero magnetic field. The transition temperature T_c (inflection point at highest temperature) and a secondary kink (T^*) —not present in unpressed samples and reflective of an intergranular coherence transition—are both clearly visible. The full scale of χ corresponds to 100% (bulk) diamagnetic shielding. The main plot shows the dependence of T_c and T^* , as determined from $\chi(T)$ curves like those in the inset, vs applied pressure. Solid and open symbols correspond to data taken with increasing and decreasing pressure, respectively. For comparison, several points from the $T_c(P)$ curve of K₃C₆₀ have been plotted on the same scale but with a P scale translated by 1.06 GPa. Both data sets approximately follow $T_c(P) = T_c(0) \exp(-\gamma P)$, where $\gamma = 0.44 \pm 0.03$ GPa⁻¹.

served near 1.5 GPa for both T_c and T^* , which is significant and surely not an instrumental artifact. A similar observation has been reported for V₃Si [11], which undergoes a pressure-induced structural transition accompanied by a change in dT_c/dP , associated with a soft phonon mode at ambient pressure. This provides further motivation for structural investigation under pressure.

The determination of the lower critical field H_{c1} is complicated when using a compressed pellet because the applied field H first breaks the intergranular supercurrents, leaving the individual grains acting as a powder sample [10]. Figure 2 shows typical magnetization curves M(H) at two different maximum applied fields (0.02 and 5 T), at both T=5 K and ambient pressure. Figure 2(a) shows that the intergranular supercurrents are reduced to near zero for H = 20 mT; whereas Fig. 2(b) shows even at 5 T substantial hysteresis that we associate with intragranular supercurrents. An analysis of the hysteresis, using a critical-state model described in Ref. [4], gives an intragranular critical-current density $J_c = 1.5 \times 10^6$ A/cm² at H = 1 T and T = 5 K. This J_c value is about 1 order of magnitude larger than that obtained on K_3C_{60} assuming the same 1- μ m particle size for

TABLE I. Superconductivity parameters in A_3C_{60} compounds.

Parameter	A = Rb	A = K
T_{c} (K)	29.6	19.3
$(dT_c/dP)_{P=0}$ (K/GPa)	-9.7	-7.8
H_{c1} (mT)	12	13
H_{c2} (T)	78	49
H_c (T)	0.44	0.38
$J_c (10^5 \text{ A/cm}^2)_T = 5 \text{ K}$	15	1.2
ξ_0 (nm)	2 ± 8.3	2.6 ± 8.2
λ_{L} (nm)	$247 \pm \frac{18}{28}$	240± <u>1</u> 8
$\kappa = \lambda_L / \xi_0$	124	92

this material.

Because of the possibility that the intrinsic H_{c1} of Rb₃C₆₀ could be masked by intergranular supercurrents at low fields, dc magnetization measurements were also performed on a powder sample prepared as described above. The inset of Fig. 3(a) shows that a flux penetration field H_a^* can be clearly defined by the deviation from linear M vs H behavior. From values of H_a^* determined at various temperatures, we calculate $H_{c1} = H_a^*/(1-n)$, assuming a demagnetization factor $n = \frac{1}{3}$, appropriate to a sphere, which reflects the geometry of isolated Rb₃C₆₀ particles. Figure 3(a) gives the temperature dependence of $H_{c1}(T)$ evaluated this way. The zero-temperature extrapolated value of $H_{c1}(0)$ is 12 ± 3 mT.

The upper critical field value H_{c2} has been determined from magnetization curves M(T) taken by zero-field cooling to well below T_c , applying various fields in the range of 0.2 to 5 T, and recording values by warming the sample to well above T_c . Typical magnetization curves for different fields are shown in the inset of Fig. 3(b).

FIG. 2. Representative magnetization curves M(H) recorded at T=5 K and ambient pressure, with the field swept as indicated by arrows over two different field ranges: (a) The range -20 to +20 mT, where the hysteresis loop in the intergranular regime is evident; (b) M(H) at fields to 5 T.

FIG. 3. (a) The temperature dependence of the lower critical field $H_{c1}(T)$ determined on a powder sample as shown in the inset and explained in the text. Error bars represent estimated uncertainty in determining H_a^* . The solid line represents the empirical law $H_{c1}(T)/H_{c1}(0) = 1 - (T/T_c)^2$. (b) The temperature dependence of the upper critical field $H_{c2}(T)$. Inset: The method of determining these values from M(T) curves at fixed field. The error bars in the main $H_{c2}(T)$ plot reflect the rounding of the transition.

Note that the transition is somewhat broader than in the case of the K_3C_{60} , and might be due to Rb deficiency [8]. T_c is determined from the intercept of linear extrapolations from below and above the transition, as shown. Figure 3(b) shows the H_{c2} values obtained in this way as a function of temperature, along with a linear fit resulting in a critical field slope of -3.9 T/K. Using the Werthamer-Helfand-Hohenberg formula [12], a zero-temperature extrapolated value $H_{c2}(0) = 78 \pm 10$ T is obtained. This value exceeds the Pauli weak-coupling limit of 53 T [13].

From $H_{c2}(0)$ and $H_{c1}(0)$, we evaluate the zerotemperature superconducting coherence length ξ_0 and London penetration depth λ_L using the relations [14]

$$H_{c2}(0) = \Phi_0 / 2\pi \xi_0^2, \quad H_{c1}(0) = (\Phi_0 / 4\pi \lambda_L^2) \ln(\lambda_L / \xi_0) , \quad (1)$$

where Φ_0 is the flux quantum. We find $\xi_0 = 2 \frac{+0.3}{0.2}$ nm and $\lambda_L = 247 \frac{+10}{-20}$ nm. These values are compared in Table I with values obtained for K₃C₆₀. ξ_0 for the Rb compound is somewhat smaller than obtained in the case of K₃C₆₀ but still larger than the nearest-neighbor C₆₀ distance *d* (ca. 1 nm). We also estimate the thermodynamic critical field from $H_c^2(0) = H_{c1}(0)H_{c2}(0)/\ln\kappa$ (Ref. [14]) and compare it to K₃C₆₀ in Table I.

The outstanding question remains as to why T_c for Rb_3C_{60} is over 10 K higher than for K_3C_{60} . A notable difference between the two alkali metals is the greater spatial extent of the $5s^{1}$ configuration of Rb relative to the $4s^{+}$ configuration of K and consequently a lattice parameter for Rb₃C₆₀ that is 0.0185 nm greater than in $K_{3}C_{60}$ (which interestingly corresponds to the difference in ionic radii) [6]. That is, compared to Rb_3C_{60} , K_3C_{60} at ambient pressure is subjected to an effective "chemical" pressure arising from the smaller ionic radius of K. Figure I shows that if $T_c(P)$ for K₃C₆₀ is shifted rigidly by 1.06 GPa relative to that for Rb_3C_{60} , T_c 's of both compounds coincide and have essentially the same pressure dependence. This pressure shift, if driven solely by steric effects, should correspond to the chemical pressure calculated from the lattice-parameter difference and the linear compressibility κ of K₃C₆₀. Unfortunately, κ is not known for K_3C_{60} . However, assuming a linear compressibility $d(\ln a)/dP = 1.21 \times 10^{-2} \text{ GPa}^{-1}$ for K_3C_{60} gives the required chemical pressure. This assumed value of κ is reasonable given reported values for pure C₆₀ that range from 1.8×10^{-2} GPa⁻¹ (Ref. [15]) to 2.3×10^{-2} GPa^{-1} (Ref. [16]). We believe this agreement is not fortuitous but provides an important clue to the mechanism of superconductivity, namely, that T_c is a unique function of volume, i.e., lattice spacing. A naive extrapolation of T_c on the lattice constant a_0 , using the ionic radius of Cs^+ , predicts $a_0 = 1.48$ nm and $T_c = 43$ K for Cs_3C_{60} .

The straightforward scaling of T_c with the lattice constant suggests that the mechanism responsible for pair formation is intrinsic to the C_{60} molecule and that the dominant pressure-sensitive parameter is the bandwidth which is governed by the overlap between molecules. The ratio of bandwidths, or equivalently state densities N(0)at the Fermi energy, for Rb₃C₆₀ and K₃C₆₀ can be estimated from the respective T_c 's, coherence lengths, and the relation [14] $\xi_0 \propto v_F/T_c$, where in a free-electron model the Fermi velocity $v_F \propto N(0)$. This relationship gives $N(0)_{Rb_3C_{60}} = 1.18N(0)_{K_3C_{60}}$, if we use values of ξ_0 from Table I, or $N(0)_{Rb_3C_{60}} = 1.24N(0)_{K_3C_{60}}$ assuming ξ_0 is derived from the respective Pauli paramagnetic fields. Further, assuming a BCS expression for $T_c = \omega_D \exp[-1]$ (JN(0)) and that the pressure dependence of the cutoff frequency ω_D is negligible, as inferred from T_c scaling with lattice parameter, we find from the ratios of $\partial(\ln T_c)/\partial P$ that $N(0)_{Rb_3C_{60}} = 1.11N(0)_{K_3C_{60}}$. Thus, the pressure dependences of T_c , coherence lengths, and T_c 's of K₃C₆₀ and Rb₃C₆₀ are consistent with a 15% larger state density in Rb_3C_{60} arising from the greater inter- C_{60} spacing in this compound. Further, the slightly larger state density in Rb₃C₆₀ is also consistent with a somewhat larger effective electron mass inferred from values of the penetration depth.

This view of superconductivity in fullerenes in which T_c is dominated by a simple volume-dependent electronic state density suggests that models [17] requiring pairing to be mediated by intermolecular vibrational modes that

involve the alkali metal are inappropriate and that an alkali-metal isotope effect should be absent. However, models in which pairing requires the unique properties of C₆₀ itself and in which the coupling strength does not vary substantially between K₃C₆₀ and Rb₃C₆₀ are favored. In these latter cases, it is not possible from our experiments to distinguish between models emphasizing intramolecular vibrational modes [18,19] or purely electronic correlations [20] as the pairing mechanism. Observation of a carbon-isotope effect would favor the former interpretation [18,19]. However, what is clear from measurements [21] of the normal- and superconductingstate magnetic properties of K₃C₆₀ is that the electronic state can be modeled by Fermi-liquid behavior in a relatively narrow band and that the effective electron mass is not renormalized strongly by Coulomb correlations. Any viable theory must be able to satisfy these experimental constraints.

K.H. and R.L.W. thank Sudip Chakravarty for very useful discussions. Samir J. Anz and Friedericke Ettl produced and separated the molecular carbon samples and O. Klein helped in sample characterization. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy. Funding has been provided by NSF grants (R.L.W. and F.D., and to R.B.K.) and by the David and Lucille Packard Foundation (R.L.W. and R.B.K.).

Note added.—Since this work was completed, Zhou et al. [22] measured the compressibility of K_3C_{60} and Rb_3C_{60} and found $d(\ln a)/dP = 1.20 \times 10^{-2}$ and 1.52×10^{-2} GPa⁻¹, respectively, which validates our assumption. These compressibilities imply logarithmic volume derivatives of T_c of 11 and 7 for K_3C_{60} and Rb_3C_{60} , respectively. Furthermore, Fleming et al. have arrived indirectly at conclusions similar to ours on the

basis of a structure- T_c relation among $A_x A'_{x-3} C_{60}$ alloy compounds [23].

- ^(a)Permanent address: Central Research Institute for Physics, P.O. Box 49, h1525 Budapest, Hungary.
- [1] A. F. Hebard *et al.*, Nature (London) **350**, 600 (1991);
 R. C. Haddon *et al.*, *ibid.* **350**, 320 (1991).
- [2] M. J. Rosseinsky et al., Phys. Rev. Lett. 66, 2830 (1991).
- [3] K. Holczer et al., Science 252, 1154 (1991).
- [4] K. Holczer et al., Phys. Rev. Lett. 67, 271 (1991).
- [5] G. Sparn et al., Science 252, 1829 (1991).
- [6] P. W. Stephens et al., Nature (London) 351, 632 (1991).
- [7] Y. J. Uemura et al., Nature (London) 352, 605 (1991).
- [8] K. Holczer *et al.* (to be published).
- [9] J. D. Thompson, Rev. Sci. Instrum. 55, 231 (1984).
- [10] J. D. Thompson *et al.* (to be published). Similar effects were reported for K_3C_{60} in Ref. [5].
- [11] G. Fasol, J. S. Schilling, and B. Seeber, Phys. Rev. Lett. 41, 424 (1978).
- [12] N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
- [13] A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).
- [14] M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975).
- [15] S. J. Duclos et al., Nature (London) 351, 380 (1991).
- [16] J. E. Fischer et al., Science 252, 1288 (1991).
- [17] F. C. Zhang, M. Ogata, and T. M. Rice, Phys. Rev. Lett. 67, 3452 (1991).
- [18] C. M. Varma, J. Zaanen, and K. Raghavachari, Science 254, 989 (1991).
- [19] M. Schluter et al., Phys. Rev. Lett. 68, 526 (1992).
- [20] S. Chakravarty, M. P. Gelfand, and S. Kivelson, Science 254, 970 (1991).
- [21] W. H. Wong et al. (to be published).
- [22] O. Zhou et al. (to be published).
- [23] R. M. Fleming et al., Nature (London) 352, 797 (1991).