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We study theoretically the transport of a one-channel Luttinger liquid through a weak link. For
repulsive electron interactions, the electrons are completely reflected by even the smallest scatterer, lead-
ing to a truly insulating weak link, in striking contrast to that for noninteracting electrons. At finite
temperature (T) the conductance is nonzero, and is predicted to vanish as a power of T At T. =O
power-law current-voltage characteristics are predicted. For attractive interactions, a Luttinger liquid is
argued to be perfectly transmitted through even the largest of barriers. The role of Fermi-liquid leads is
also explored.

PACS numbers: 72. 10.Bg, 73.20.Dx

In recent years there has been tremendous interest in

electron transport through barriers or weak links in which
Coulomb effects play an important role [I]. A central
feature is the Coulomb blockade, due to the Coulomb
barrier that must be overcome to transfer a single elec-
tron across a weak link. In the so-called "orthodox"
theory [2], no current is possible at T=O until the voltage
across the link exceeds the capacitive energy, e /C. In
more recent refinements [3], which allow for tunneling
through the Coulomb barrier via virtual states between
two weak links, a small Ohmic leakage current is predict-
ed. However, a number of recent theories [4,5], which

study the effects of a series lead resistance on the tunnel-

ing process, make the striking prediction that the Ohmic
leakage current is suppressed to zero at T=O for any
nonzero series lead resistance. In this case the weak link

is predicted to be a true insulator with strictly zero linear
conductance. If the transport through the weak link is

viewed as a scattering problem as in the Landauer theory
[6], this result is most strange indeed. At least for nonin-

teracting electrons it is clear that there will always be
some nonzero transmission through even the weakest of
weak links. Are we to believe that inclusion of a series
lead resistance changes this qualitatively, and can lead to
a truly insulating link?

In this Letter we consider the transport of a one-
channel interacting electron gas through a weak link. In

contrast to previous work on the Coulomb blockade, we

include explicitly electron-electron interactions even away
from the weak link. As we shall see, these play a most
crucial role. Our motivation for studying one dimension
(ID) is twofold. First, it has become possible over the
past several years to fabricate single-channel nanostruc-
tures, and interesting effects related to the Coulomb
blockade have been observed [7]. In addition, in contrast
to higher dimensions, precise statements can be made in

1D even in the presence of interactions
Away from charge-density-wave instabilities the lD

spinless interacting electron gas is a Luttinger liquid [8],
which is characterized by power-law decay of various
correlation functions with exponents which depend on the
strength of the interactions [8,9]. In the following we

show that the transport of a Luttinger liquid through a
weak link is strikingly different from that in a Fermi
liquid (i.e., noninteracting electrons). The behavior de-
pends critically on whether the electron interactions are
repulsive or attractive. For repulsive interactions, an ar-
bitrarily small obstacle is shown to lead to complete
reAection and gives a zero linear conductance at T=O.
At T&0 the conductance is found to vanish as a power of
temperature [10]. Fermi-liquid leads attached to a one-
channel sample of length I cut off this power law below a
crossover temperature Tt =hvF/Lktt, where vF is the
Fermi velocity. A Luttinger liquid with attractive elec-
tron interactions, on the other hand, is argued to be per-
fectly transmitted through even the largest of barriers.
The Fermi liquid with no interactions has a finite conduc-
tance [6] which depends on the strength of the barrier,
and lies on the boundary between these types of behavior.

To model a Luttinger liquid, we adopt Haldane's ap-
proach [11] to describe 1D spinless fermions in which the
Fermi field Ilt(x) is expressed in terms of two boson fields

pand 8:

Ilt (x)-g exp[in[Jn 6(x)+kFx]}exp[iJig(x)] . (1)
nodd

The boson fields satisfy the commutation relations

[P(x),0(x')] = —iB(x —x'), so their respective canonical
momenta are given by 8&=9,0 and H&=8, IIII. These
have a simple physical interpretation: t), p is essentially

the current and al„e is proportional to deviations of the
particle density from its mean density p=k / Fwttith kt.
the Fermi wave vector. The sum over n in (I ) accounts
for the discrete nature of the particle density. Fermi
statistics is due to n being odd: Even n would give a ho-

sonic field y.
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The Hamiltonian for a Luttinger liquid can be written
as H =fP dx, with

P =(I/2g)(II&) + —,
' g(8 p) (2)

Noting that n =+ I dominates the long-distance behav-
ior, we see that g=1 gives a I/x decay appropriate for
noninteracting electrons, whereas for g&1 a larger power
is found corresponding to an interacting Luttinger liquid.
The corresponding tunneling density of states (DOS),
p(g), varies as

( ) e(g+ I/g)/2 —I

which vanishes with energy for all g~l. For a transla-
tionally invariant interacting 1D electron gas, Haldane
[11] has shown that g =xhdptr/m, where m is the elec-
tron mass and tr=Bp/Bp is the compressibility, so that
repulsive interactions correspond to g &1, whereas at-
tractive interactions will give g & 1.

Before considering the role of a weak link we first
evaluate a two-terminal conductance for the pure Lut-
tinger liquid. Following Fisher and Lee [12] we apply a
uniform electric field in a restricted interval 0 & x & L, at
frequency co, and evaluate the current response. The con-
ductance G is thereby expressed as

2

G= ' I, e-'"(T,J(x, r)J(x', 0)),
L 2~ 4.x,.r', r

(5)

where the spatial integrals run only between 0 and L„and
the current J=8,8. Evaluating this using X in (3) and
taking the dc limit, to 0, gives G=(e /h)g. This re-
sult, obtained originally by Apel and Rice [13], shows
that the "rule" of e2/h conductance per channel [6] is
only correct for noninteracting electrons (or more gen-
erally for a Fermi liquid). In ID interactions change the
Fermi liquid into a Luttinger liquid and the conductance
per channel is multiplied by g.

Consider now the effect of a weak link in an otherwise
perfect one-channel Luttinger liquid. We analyze this

The partition function Z =Tr exp( /jH—) can be ex-
pressed as an imaginary-time path integral over p(x, r),
with the Euclidean Lagrangian

X =(g/2)(8„y) '.
Here p labels x and imaginary time r. We have rescaled
space and time to make the Fermi velocity equal to 1.
This leaves a single dimensionless coupling constant, g,
which characterizes the Luttinger liquid. The Hamiltoni-
an and Lagrangian can be expressed in terms of the 8
field by letting p 8, II~ H&, and g I/g. The "self-
dual" point of this transformation, g= 1, corresponds to
noninteracting electrons. This can be inferred by evalu-

ating the single electron Green's function, Q(x, r )
=(T,yt(x, r )y(0, 0)) using (1)-(3):

Q(x, 0)-g exp(inkpx)x (4)

problem perturbatively in two limits: (I) a very weak
barrier (almost perfect conductor) and (2) a very weak
link (almost perfect insulator). In the first limit, the
zeroth-order problem is the uniform Luttinger liquid de-
scribed by (3), to which we add a weak local perturbation
at, say, x =0. The perturbation will involve either a weak
scattering potential, A, yt(x=0)y(x =0), or, in a lattice
model, we could reduce the hopping strength across one
link at x =0 by a fraction t =1 —k. As we shall see, they
both have the same effect. In order to analyze this limit,
it is convenient to consider the dual (or 8) representation
of (3) and perform a partial trace, integrating out 8(x)
for all x away from the perturbation. This leaves an
effective action in terms of 8(x =0, r ):

(6)

In imaginary time this action is nonlocal; the interactions
are mediated by the low-lying fluctuations of the Lut-
tinger liquid. A renormalization-group (RG) transfor-
mation which integrates out high frequencies and then re-
scales frequency [but not 8(r)] leaves the action invari-
ant. Thus (6) is a fixed-point action. Using (I), we may
express the perturbation in terms of 8(r ). In either case
it will be a sum of terms of the form

hS„=k„„cos[iz2n8(r )], (7)

with n= 1,2, . . . . The action (6) and (7) is formally
equivalent to the Caldeira-Leggett [14] model for a resis-
tively shunted Josephson junction, and has been analyzed
in some detail in this context [15]. A straightforward RG
transformation for small X„gives the leading-order recur-
sion relation: N, „/81=(I —n g)X„. The most relevant
term is thus BSi, which becomes relevant for g & 1. The
important feature of this perturbation, which is common
to the barrier or the weakened link, is the presence of 2kF
scattering.

The corresponding RG flows for small A. =1 —t are
shown in the upper part of Fig. 1. We see that a weak
barrier is an irrelevant perturbation for attractive interac-
tions (g & I ) and relevant for repulsive interactions
(g & I ). For noninteracting electrons it is marginal.
Physically, for g& 1 an incoming wave suffers less and
less reflection upon lowering its incident energy, and in
the limit of zero incident energy (i.e., at the "Fermi" en-
ergy) one gets perfect transmission. This can be seen for-
mally by evaluating the conductance to order A, using
(5), which gives G —g(e /h)= —lj. m '; i.e., perfect
transmission in the dc limit. For repulsively interacting
electrons with g & 1, X flows to large values under the RG
and the perturbation theory breaks down. As we show
below, in this case, rather than perfect transmission, we
find total reflection.

The regime g & 1 can be more easily analyzed in the
opposite limit of a large barrier or a very weak link. To
this end we consider the lattice model with t((1. The
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e~ 4t~G=-
h ( I+ t2)
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FIG. 1. Schematic How diagram for 1D interacting electrons
with one link weakened by fraction t. Here 6 is the conduc-
tance across the weak link. Perfect reflection is found for repul-
sive interactions, g & l, and perfect transmission for attractive
interactions, g ) 1. Noninteracting electrons, g = I, are mar-
ginal ~

zeroth-order problem (t =0) consists of two semi-infinite
lines, which can be described by the Lagrangian (3) with

the x integration restricted to positive or negative x, re-

spectively. It is again convenient to perform a partial
trace (in the p representation), integrating out p(x) for
all x away from the weakened link. We will then obtain
an elfective action in terms of the phases p+ (r ) on each
side of the link. If we further define P =(P~ —

p )/2 and

4=(p++p )/2, we may integrate out 4(r) and obtain
the following effective action in terms of the phase
difference across the junction:

s„,=g„ I ~ I I y(~) I

-'. (8)

Note that this expression is precisely the dual of (6).
Again, we may express the perturbation t in terms of y,
and the most relevant operator is

SS—t cos[2Jap],4 z
(9)

I—t
' (I —e -t")P(V), - (IO)

where the Fourier transform of P(V), denoted P(t),

which corresponds to hopping an electron across the weak

link. In this case the leading-order RG flows for small t
are 8t/t)l=(1 —g ')t, which is shown in Fig. 1. Thus,
once again g =1 is marginal, but now the perturbation is

irrelevant for g & 1. For repulsively interacting electrons
with g & 1, an initially weak hopping scales to zero at low

energies. As shown below, this corresponds to an insulat-

ing link with strictly zero linear conductance.
This can be seen by deriving an expression for the non-

linear current-voltage characteristics as a perturbation
expansion in powers of t. Upon applying a voltage V

across the weak link by adding a vector potential into the
argument of the cosine in (9), we can obtain an expres-
sion for the current response to second order in t:

satisfies

t fF
InP(t) = dry(2/tag) [coth(Pco/2)( —1+cosset)

—i sintot],

where EF is the Fermi energy. This result is similar (but
not identical) to that obtained by Devoret et al. [5] who
studied the elfects of a series resistor (modeled a la Cal-
deira and Leggett [14]) on a tunnel junction. The boson-
ic excitations of the Luttinger-liquid leads described by
(3) are an explicit physical realization of the Caldeira-
Leggett oscillators. In the expression derived by Devoret
et al. , though, when the series lead resistance is set to
zero, an Ohmic I-V curve follows. In contrast, as we see
below, (10) and (11) only give an Ohmic I Vcurv-e when

the electrons in the ID leads are not interacting (g= I),
so that the series lead resistance is h/e

Evaluating (10) and (11) at T=0 gives a power-law
I - V curve: I—t - V- ~ . For noninteracting fermions

(g = I ) this gives the expected Ohmic conductance,
whereas the expansion breaks down as V—0 for g & l.
For g & 1, though, a truly insulating link with strictly
zero linear conductance is found. At T~O the linear con-
ductance vanishes as a power law for g & 1:

(12)

An approximate interpolation formula when both T and
V are nonzero is I—t [Im(T+i V) ~ ]. Notice that G
in (12) is not proportional to the square of the tunneling
DOS: p(e=T) —T~+'t~ . This is because the rele-

vant DOS for the conductance is that for tunneling into
the end of a semi-infinite Luttinger liquid, which varies as

p„.„d(e)-c' ~ '. Note that for all gal, p,.„d(e) varies
with a diferent power than the bulk DOS p(c).

For the lattice electron model with one weak link, it is

of course possible to calculate the two-terminal conduc-
tance for the noninteracting case (g= I ) for all t One.
finds G =(e-/h)4t /(I+t ). Thus, in the RG sense, the
line g= I corresponds to a "fixed line" (see Fig. I). In

view of this soluble case, it seems extremely plausible
[15] that for g&1 one can join together the RG IIows be-

tween the two perturbative regimes (I —t and small t).
This would imply that 6=0 for all t&l when g & 1,
whereas G =ge /h for all nonzero t when g & 1.

Real experiments will be complicated by the fact that

any one-channel wire must eventually open up into wide

leads, where presumably Fermi-liquid theory is applic-
able. This defines a length scale L or a time scale L/it,
which will cut off' the infrared divergences associated with

the Luttinger liquid. To study this we consider an ideal-

ized model of an infinite one-channel wire with electron
interactions present only in the "sample" with lxl & L,
but absent in the (Fermi-liquid) "leads, " lxl & L. In the

absence of the weak link, which we will take to be placed
in the middle of the sample at x =0, the appropriate La-

grangian is given by (3), but with g depending on x, be-
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ing equal to g in the sample and equal to 1 in the leads.
It is convenient once again to integrate out all fluctua-
tions away from the weak link, to arrive at an effective
action as in (8), except with g gl. (ro), where gI. (ru)
crosses over from g at high frequencies to 1 at low fre-
quencies. The crossover frequency is given by rol. = hvF/
I, and is a measure of the time that an electron originat-
ing at the weak link takes to reach the Fermi-liquid leads.
For ru roI we thus expect Luttinger-liquid behavior (i.e.
g&l). The I Vcu-rves are given by (10) and (11) as be-
fore, except now g in (11) is replaced by (the analytic
continuation to real frequencies of) gl (ru). This gives a
current which crosses over at a voltage Vl. = hrul. /e, from
a power law at higher voltages (V ~g ') to linear (Ohm-
ic) at lower voltages. At T&0 the linear conductance
crosses over from a power law T g, above a tempera-
ture TI =hroI/ka, to a tetnperature-independent con-
stant at lower temperatures.

An experimental search for such power laws will be
greatly facilitated if g can be estimated. A rough expres-
sion follows by adding a Coulomb energy, e /a, with a an
appropriate dielectric constant, to the inverse compressi-
bility for a noninteracting electron gas. Using [11]
g =rrh&'ptr/m this gives g =(I+e /2aaEF) ', where a
is the interelectron spacing.

There is clearly a need for much future work exploring
the transport of Luttinger liquids through weak links to
resolve questions such as: How are the above results
modified when two barriers are present, which allows for
the possibility of resonant tunneling, and what role is
played by spin and multiple transverse channels?
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