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Hall Conductivity and Fermi Surface in Highly Correlated Systems
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We calculate exactly the one-particle spectral densities and Hall conductivity for the two-dimensional
Hubbard model in the large-U limit, for two different finite clusters. The Fermi surface obtained from
the one-particle spectral functions is consistent with Luttinger’s theorem, but the Hall conductivity
changes from electronlike for a dilute system to holelike for a nearly half-filled system, indicating the
deconfinement of charge and spin excitations in a two-dimensional system.
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The electronic properties of doped Hubbard-Mott insu-
lators have been studied for many years. The discovery
of high-T, superconductivity in the cuprate materials and
the assumption that simple nearly half-filled one-band
models retain the essential physics of these systems re-
newed the interest in this problem [1].

A central question in the theory of high-T, supercon-
ductivity concerns the nature of the Fermi surface and
the low-energy excitations in these materials. One of the
most controversial questions is whether spin and charge
are deconfined as in one-dimensional problems [2] or
whether the excitations carry charge and spin together,
being real electronlike quasiparticles [3].

Angle-resolved photoemission and inverse photoemis-
sion experiments in some of the high-7, materials indi-
cate the existence of a “large Fermi surface” consistent
with that of a weakly interacting system [4,5]. In fact,
band-structure calculations, which clearly cannot be used
to describe the undoped insulating materials, predict for
the doped systems a Fermi surface consistent with the one
obtained by photoemission [6]. However, this successful
prediction of one-electron-band calculations cannot be
taken as evidence of weak interactions in these systems.
If Luttinger’s theorem [7] is obeyed, the Fermi volume is
invariant under interaction effects and a strongly in-
teracting system should also have a large Fermi surface.
It has recently been shown that in a two-dimensional
(2D) square lattice the Fermi surface of a ¢t-J model is
consistent with Luttinger’s theorem [8]. Monte Carlo
simulations for a nearly half-filled 2D Hubbard model
also support this result [9].

In this Letter we study numerically the Fermi surface
and the Hall resistivity of a 2D Hubbard model with
strong on-site interactions. Consider the case of a nearly
half-filled system (with the particle density n < 1): as we
show below and in agreement with previous results, the
one-particle spectral densities are consistent with a large
Fermi surface. Moreover, the characteristic features of
the spectral functions are strongly reminiscent of the ex-
perimental results. One of the important questions is
whether this Fermi surface can be used to build a semi-
classical theory for the dynamics of quasiparticles in an
external magnetic field. If this were so, the Hall resis-

tance should be negative for n < 1, indicating electronlike
carriers. The de Haas-van Alphen effect should indicate
the existence of such a large Fermi surface. If, on the
other hand, charge and spin excitations were decoupled,
the charge dynamics should be dominated by the ex-
istence of a pseudo Fermi surface for charge excitations
which may be quite different from that observed in photo-
emission.

In the Hubbard model for large U, the kinetic energy
and the integrated low-energy optical conductivity are de-
creasing functions of n for a nearly half-filled band [10].
Some authors have interpreted this result as an indication
that charge carriers are holes, in accordance with the
second point of view.

Recently Ioffe, Kalmeyer, and Weigmann [11] showed
that a hole-doped Mott insulator has a positive Hall resis-
tance and that its temperature dependence is consistent
with experiments made in high-7, materials. Their start-
ing point is an effective Hamiltonian where charge and
spin excitations are decoupled and consequently the posi-
tiveness of the Hall resistance they obtained is not sur-
prising.

In order to put all the pieces together and build a con-
sistent theory it is important to calculate in a good ap-
proximation and at the same footing the different proper-
ties of the system, i.e., the one-electron spectral densities,
to obtain the Fermi surface and the Hall resistance of the
system.

To do so we have studied numerically a Hubbard
Hamiltonian in the limit of strong on-site interaction U.
All results presented below are obtained by exact diago-
nalization techniques [12]. To reduce the size of the Hil-
bert space, we eliminated, through the usual canonical
transformation, the doubly occupied states. The resulting
Hamiltonian reads

4|t;;]?
H=§j>(t,>jc,-‘:,cja+ HC)+§)'—TIJI——‘(S,S! - l—n,-nj)
1ty t
+ hoCiolt —o'C i’ (1

ey U

where the operator c¢;, destroys a fermion of spin o at site
i, S; is the spin operator for site i, n;, is the fermion num-
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ber operator for site i and spin o (n; =n;; +n;|), the sym-
bol (ij) denotes the sum over all pairs of nearest neigh-
bors, {ijk) denotes the sum over all sets of three sites with
i and k nearest neighbors of j, and ¢;; is the hopping ma-
trix element between sites / and j. All fermion operators
are subject to the constraint of no double occupation. In
what follows we indicate by ¢, and ¢, the hopping matrix
element along the x and y directions, respectively, and we
define J, =412/U.

We solved exactly the problem in two finite clusters of
N =12 sites each and all possible numbers of particles N,
(1=N,=<N). We considered rectangular clusters with
periodic boundary conditions in the x direction and open
boundary conditions in the y direction. The two types of
clusters considered were 4x3 and 6x2 (the notation m x/
indicates m sites in the x direction and / sites in the y
direction). These geometries were chosen in order to be
able to include an external magnetic field B of arbitrary
intensity perpendicular to the plane. We considered only
the diamagnetic coupling of the external field with the
charged particles. This is done through Peierls substitu-
tion [13], which in the present case can be done by add-
ing a phase to the hopping matrix elements in the x direc-
tion (this affects all terms except the spin-spin coupling).
In what follows we present results for the one-particle
spectral densities in the absence of magnetic field and the
transverse conductivity oy, in the presence of a small
magnetic field B.

For a rectangular m %/ cluster with periodic boundary
conditions only along the x direction the band structure
of uncorrelated particles consists of / bands. Within each
band the quantum number k, varies between —n/a and
n/a, where a is the lattice parameter. Each band is
characterized by a quantum number a corresponding to a
different wave function in the y direction. For our 4x3
cluster we defined a=—1, 0, and 1 for the lower, medi-
um, and upper bands, respectively. As the one-particle
states are filled, each band has a different Fermi momen-
tum kqr. This collection of kqr defines a “Fermi sur-
face.” Although this geometry is not the most appropri-
ate for studying the Fermi surface, it is necessary for cal-
culating the Hall conductivity and as mentioned above we
calculate all the properties in the same cluster in order to
minimize possible inconsistencies due to finite-size effects.

In the interacting system the expectation value for the
occupation number nq, of the state lak,) is greater than
0 and lower than 1. We define k., as the momentum
where this expectation value is equal to 0.5. With this
criterion the Fermi surface in the interacting system is
the same as in the noninteracting one. In Fig. I the ex-
pectation value of 14, is shown; to present all the states
in the same figure, we plotted (n. ) as a function of the
noninteracting one-particle energies €q, . As is evident
from the figure, for all densities n =N,/N the Fermi sur-
face is consistent with Luttinger’s theorem. In Fig. 1(c),
corresponding to N, =10 particles and J, =0.1¢, in the

122

1.0
® o (a)
0.5
0.0 © 29 n.a = -
1.0
0 o o )
éU.S [
—
v
0.0 8 @9 g g Q
1.0
(c)
0.5t ™ x . O N
a -]
0.0
-4 -2 0 2 4
€ otk
FIG. 1. Occupation numbers (n. ) as a function of the

noninteracting one-particle energies €a for Ji/tx =0.1 in the
4x3 cluster. (a) N.=4, (b) N.=6, and (c) N.=10. In (c),
different symbols indicate different values of the quantum num-
bers a: a=—1 (stars), a=0 (crosses), and a=1 (squares).
Continuous lines indicate the occupation numbers for the nonin-
teracting systems.

4x3 cluster, there are some oscillations in (ng ). This is
a consequence of plotting all bands on the same scale;
with each band, however, the behavior of ng_ is monoto-
nous. The same results are obtained for infinite U
U, =0).

The one-particle spectral densities obtained from the
Green functions ((cakj,c,ka» are shown in Fig. 2. The
spectral densities show a lot of structure that extends far
from the Fermi energy. There is a strong peak that
crosses the Fermi energy as k. crosses the corresponding
Fermi momentum k,r. These spectral densities are in
qualitative agreement with photoemission spectra ob-
tained in high-T,. materials. Although the clusters stud-
ied are small and do not have x-y symmetry, these results
together with those obtained in Refs. [8,9] are evidence
that the Fermi surface in these strongly interacting sys-
tems is consistent with Luttinger’s theorem if the number
of holes is large enough. The case of a single hole may
have a particular behavior [8,14].

We now present results for the transverse conductivity
oxy. The Hall resistance Ry =R,/B or the Hall number
ny must be calculated by inverting the conductivity ten-
sor, and have the same sign as o,. We calculated the
transverse conductivity using linear response theory. We
included a magnetic field perpendicular to the plane and
considered the perturbation produced by a small trans-
verse electric field. The coupling of the electrons to the
electric field is given simply by Hip = —eE Y.iyi, where e
is the electron charge, E is the electric field, and y; is the
y coordinate of the ith electron. The transverse conduc-
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FIG. 2. One-particle spectral densities for ten particles in the
4x3 cluster with J./t, =0.1. (a)-(c) correspond to a =0 with
k<=0, n/2, and =, respectively; (d)-(f) correspond to a=1 with
k=0, n/2, and r. The solid and dashed lines correspond to the
photoemission and inverse photoemission spectra, respectively.
The spectral functions are plotted with a Lorentzian broadening
of §=0.08¢,. The Fermi energy is located at w=21,.

tivity is
Oxy = —e’a 2’.\‘(<,7X9j)->>re(|w=03 )

where j, and j are adimensional current and position
operators. This equation yields for a noninteracting sys-
tem in the two clusters studied a negative transverse con-
ductivity for all densities (0 <n < 1), in agreement with
the semiclassical theory.

In Fig. 3, we show the results obtained as a function of
N, for both the 4x3 and 6x2 clusters and different
values of U. There are three points which are not includ-
ed; for these points, because of quasidegeneracy of the
ground state in these geometries the computation of oy,
is subject to large numerical uncertainties.

There are several features which deserve comment:
The transverse conductivity for J, =0 is electronlike for
low n and holelike for larger n. The Hall number
changes sign when the lower Hubbard band is approxi-
mately half filled (n=0.5). The single-hole problem is a
special point. The total spin of the system for one hole
and J, =0 is maximum in agreement with the Nagaoka
theorem; consequently the transverse conductivities for a
single hole and a single electron are equal in absolute
value and of different sign. For all other densities in the
4x 3 cluster the total spin is zero for even N, and ¥ or 3
for odd N,. For this system, the behavior of even and odd
number of holes appears to be slightly different; this is
probably due to finite-size effects. In the 6x2 cluster,
both the eleven- and nine-particle ground states are com-
pletely polarized, but for all other densities the total spin
is between 0 and 2. Note that, although there is no

electron-hole symmetry in the lower Hubbard band, the
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FIG. 3. Transverse conductivity as a function of the total
number of particles for (a) a 4x3 cluster with 1, =t,, and (b) a
6x2 cluster with ¢, =2t.. Squares and stars correspond to
J/ty =0 and 0.1, respectively.

absolute value of the transverse conductivity for the case
of a few electrons V. is of the same order of magnitude
as the conductivity for a few holes N —N,. As U de-
creases there is a tendency towards a disappearance of
holelike behavior for n=1. This could be a consequence
of the antiferromagnetic correlations, which increase rap-
idly as U decreases. In fact, as shown in Fig. 4 the Hall
conductivity for the 4x3 cluster with N, =10 changes
sign when strong short-range antiferromagnetic correla-
tions appear.

As a general behavior, these results show that for large
U (J, =0.1¢,) the Hall number changes sign when the
lower Hubbard band is approximately half filled, the car-
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FIG. 4. (a) Transverse conductivity as a function of J./t, for
the 4x3 cluster with N, =10 and #, =t,. (b) Nearest-neighbor
spin-spin correlations. Parameters are the same as in (a).
Squares indicate correlations along the upper and lower chains,
and crosses indicate the correlations of the central chain. The
lines are only to guide the eye.
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riers being electronlike for low density and holelike for in-
termediate densities. For larger densities (n=1) the be-
havior of the transverse conductivity is dominated by the
spin-spin correlations. If U is large enough, the Hall
number remains positive up to n=1; if U is smaller, how-
ever, the transverse conductivity becomes negative for low
hole doping. For the system we studied there is a region
of densities which depends on the cluster (typicaily
0.5<n<0.75) where the Hall number is positive for a
wide range of values of U. The interplay between antifer-
romagnetism and the Hall conductivity in the region
n==1 cannot be studied in detail in these small clusters;
unfortunately the Hilbert spaces for larger clusters are
too large for our computing facilities.

Our results can be taken as indirect evidence that in
the 2D Hubbard model, in the large-U limit, charge and
spin excitations are decoupled, and, although one-particle
band-structure calculations may correctly predict the
shape of the Fermi surface, they cannot be used to pre-
dict the dynamics of charge excitations.

Another interesting point is what is the “Fermi sur-
face” that a de Haas-van Alphen experiment probes.
This problem is much more difficult to study in a small
cluster, although we are currently working on the prob-
lem.

To summarize, we have for the first time calculated ex-
actly the spectral densities and the Hall conductivity in
the same strongly interacting system. Our results show
that the Fermi surface calculated from the one-particle
spectral functions is consistent with Luttinger’s theorem
and the Hall conductivity for a nearly half-filled system
(n=1) indicates holelike carriers if the parameters are
such that the antiferromagnetic correlations are weak.
This makes evident the failure of the one-particle theories
which would predict the wrong sign for the conductivity.
This apparent contradiction between the shape of the
Fermi surface and the Hall conductivity can be taken as
evidence of the deconfinement of charge and spin excita-
tions.
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