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In a dilute, low-disorder, two-dimensional hole system at the GaAs/AlGaAs heterointerface, we ob-
serve a reentrant insulating behavior around the v=1 fractional quantum Hall liquid at B=5 T, strik-

ingly similar to recent observations in low-disorder 2D electron systems near v=1%.

We interpret this

behavior as manifesting a weakly pinned hole Wigner crystal around v= 1}, and suggest that its observa-
tion at such large v is a result of Landau-level mixing which, in the case of much heavier holes,
significantly modifies the ground-state energies of the fractional quantum Hall and Wigner crystal states

of the system.

PACS numbers: 73.40.Kp, 71.55.Jv, 72.20.Ht

One of the most exciting aspects of the physics of two-
dimensional electron systems (2DES) concerns the ter-
mination of the fractional quantum Hall (FQH) effect
[1] at low Landau-level fillings, v. It is intuitively clear
that strong disorder will terminate the FQH effect by
magnetic freeze-out. However, in a pure system, transi-
tion to a Wigner crystal (WC) is expected to occur at
sufficiently low v (=1/6.5) and low temperature [2-4].
Thanks to the availability of very low-disorder dilute
2DES, research on this subject has intensified in the last
three years and has been fueled by new experimental re-
sults as well as controversy [5-15]. Magnetotransport
experiments on 2DES in GaAs/AlGaAs heterostructures,
which have been the subject of most of these studies
[7-10,12-15], have established that at v=+% the ground
state is FQH liquid. This is evidenced by the vanishing of
the diagonal resistance Ry, at v= 1 and the quantization
of the Hall resistance Ry, at Sh/e 2. At v slightly above
and below %, however, R,, diverges as T— 0, indicating
an insulating ground state with a strongly nonlinear /-V
characteristic. Although there is still no direct and con-
clusive evidence for the transition to a WC, the results
have been generally interpreted as consistent with the for-
mation of a reentrant, weakly pinned electron WC near
v=1.

In this Letter we report magnetotransport data for a
low-disorder 2D hole system (2DHS) at the GaAs/AlGa-
As heterointerface. The areal density in this sample,
p=4x10'"" cm ~?, is comparable to the density of some
of the 2DES in which the formation of an electron WC
near v=+ has been widely discussed [9,13-15]. The
magnetotransport data for this 2DHS are strikingly simi-
lar to those for the 2DES, with the notable exception that
the reentrant insulating phase is observed around v=+
rather than v=1+%. The observation of such similar be-
havior at a markedly higher filling factor is most surpris-
ing and unexpected. We attribute this difference to the
profound effect of Landau-level (LL) mixing on the
ground-state energies of the FQH liquids and the WC
[16], and interpret the results as further evidence that the
reentrant insulating phase is a weakly pinned WC. Such
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LL mixing is expected to be much more substantial for
holes, whose heavier mass reduces the LL separation by a
factor of 5 compared to the separation for electrons [17].
We conclude that LL mixing in our 2DHS reduces the
difference between the ground-state energies of the WC
and the liquid state at v= % to the point that, in the im-
mediate vicinity of v= {, the ground-state energies cross
and the WC becomes the ground state.

Measurements were made on high-quality 2DHS at the
GaAs/AlGaAs interface. The samples were grown by
molecular-beam epitaxy on an undoped GaAs (311)A4
substrate and modulation doped with Si, which is incor-
porated as an acceptor on the (311)A surface [18,19].
The structural details and growth technique are similar to
those of Ref. [19] and will be discussed elsewhere. Elec-
trical contact was made at the corners of a 2X2-mm?
sample by alloying In:Zn (95:5) in a hydrogen atmo-
sphere. Magnetotransport measurements were carried
out in a dilution refrigerator with a base temperature of
=20 mK. The measured hole density and mobility in
this structure, when cooled in the dark, are p=4.0x10'°
cm ~? and p=3.5x10° cm?/Vs, respectively. All of the
three samples studied so far have exhibited the phenome-
na we report here.

Figure 1 shows R, versus the applied magnetic field B
for our 2DHS with p=4.1x10'" cm =2 at T=22 mK.
The data are striking in that there is a sharp resistance
spike at ¥ <v< ¥ whose magnitude exceeds 340 kQ.
This is about 100 times larger than the R,, values at
maxima between any integer or FQH states at lower B in
this sample. The R, spike is strongly 7 dependent and
diverges as T— 0 indicating an insulating phase. By
contrast, at v=1+, R.,,— 0 as T— 0, evincing the for-
mation of the FQH state. The inset to Fig. 1 shows that
the % fractional state is also well developed. The obser-
vation of a v=14 FQH liquid and, at the same time, an
insulating phase at v larger than + provides clear evi-
dence that single-particle localization is not responsible
for the insulating phase. The data in Fig. 1 have a
surprising resemblance to observations in low-disorder
2DES, except that the resistance spike for the 2DES is
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FIG. 1. Diagonal resistance vs magnetic field. Inset: Expan-

sion of the data showing the v=1% and % minima. The data
were taken with 110 7' A current excitation.

observed at a markedly different filling factor between +

and § [9,10,12-15].

In Fig. 2 we show more details of the magnetotransport
properties of this system at a slightly lower density
(p=4.0x10'"cm ~2). Figure 2(a) shows the Hall resis-
tance Ry, at T =24 mK. The data show the quantization
of R,, at integer v and at v= 1. In the region of the R,
spike ({ <v< _%) and for v< %, R, shows anomalous
behavior, but in a small field range very near v= % where
R — 0, R, is quantized at 3h/e% Similar observations
have been made of R,, in 2DES near v= ¢ [14]. Figure
2(b), an expansion of the low-field data, shows well-
resolved integer and fractional states.

Figure 2(c) shows that as T is raised, R, in the re-
gions + <v< 3% and v< | strongly decreases. At T
=86 mK a R, minimum at v=12% js observed while at
yet higher T (=137 mK), there is an indication of a de-
veloping v=1t FQH state. The structure near % is ob-
served at temperatures at least as high as 0.5 K and is ac-
companied by a weak feature in R,,. These observations
are qualitatively similar to those for 2DES in the v< +
range where, as T is raised, first the # state appears at
T =100 mK and then the # state at =220 mK [9,20].

In Fig. 3 we show the 7 dependence of the R,, spike at
v=0.37 (B=4.6 T in Fig. 1) and the R,, minimum at
From the activated behavior of the + data, we
determine A==400 mK for the gap of the + FQH state
[using R, cexp(—A/2T)]. The data at v=0.37 show a
strong T dependence; R,, decreases by more than 2 or-
ders of magnitude as T is raised from ~20 to 300 mK.
This T dependence of R, including its not being simply
activated, is strikingly similar to our data for a low-
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FIG. 2. Details of the magnetotransport coefficients: (a) The
Hall resistance R,,, (b) the low-field R.\, and (c) the tempera-
ture dependence of R,..

density (=5x10'" cm ~2) 2DES at v=0.21 in the same
range of T [21]. For comparison with 2DES results, it is
worth noting that the activation energy we obtain by
fitting R.. by the expression Ry, xexp(E,/T) in the
high-T range (77> 100 mK) is £,=300 mK. This is
comparable to E, for the R, peak at v=0.21 obtained in
a similar T range: E,=600 mK at B=20 T [10] and
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FIG. 3. Temperature dependence of R,, at v=§ (open sym-
bols) and v=0.37 (solid symbols).
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=300 mK at =11 T [21].

Finally, in Fig. 4 we show examples of the /-V charac-
teristics for this sample in the ¥ <v< ¥ region. The
data clearly indicate a strong nonlinear behavior. The /-
V' characteristics shown in Fig. 4 are different from the
reported results for the 2DES [9,10,12-14], but we have
obtained similar data for some of our 2DES [21]. It is
worth emphasizing that the I-V results for 2DES are still
controversial; several groups have reported qualitatively
different /-V characteristics and have interpreted them in
different ways [9,10,12-14].

We now discuss the effective mass m™* of 2D holes in
the GaAs/AlGaAs heterostructure and then show that
m?* plays the crucial role in our observation. In our
2DHS, only the lowest, heavy-hole subband is occupied.
Furthermore, the lack of inversion symmetry in a tri-
angular potential well like ours lifts the spin degeneracy
of this band, even at B=0 [22-24]. As a result, holes oc-
cupy two singly degenerate subbands with heavy masses
m% and m* and in the extreme quantum limit, v <1, all
reside in the lowest-energy m% LL. The dispersions of
these bands are complicated by nonparabolicity and an-
isotropy, leading m% and m* to depend on the Fermi en-
ergy and B [25]. From preliminary cyclotron resonance
experiments on similar 2DHS and at similar B, we have
measured m% ==0.3m [26]. Consistent with the theoret-
ical expectation [25], this value is smaller than m%
=0.6mq measured by Stormer et al. [22] for a 2DHS [at
the (100) GaAs/AlGaAs interface] with much higher
density (p=5x10"" cm 72). We emphasize that our ar-
gument for the role played by m¥ in our observation will
not depend sensitively on its exact value.

The main result of our experiment is the observation of
a reentrant insulating phase around the v=+ liquid in a
2DHS which is strikingly similar to the insulating phase
around the v=t liquid in low-disorder 2DES. The ques-
tion is: Why such a similar behavior at markedly dif-
ferent v? We interpret the observed transport charac-
teristic as that of a weakly pinned WC and suggest that
the answer lies in the very different effective masses
of electrons and holes in GaAs. For electrons mJ
=0.067mq while m% for holes is about S times larger.
This large m3 substantially reduces the LL separation
(=hw.=heB/m*) so that, at moderate B (=5 T), h o,
is only a small fraction of the Coulomb energy
e*(xn)"*/aneey and is comparable to the FQH gap
[=0.1¢%/(4rneep/1)] for an ideal 2D system [/ =(h/
eB)'” is the magnetic length and =13 for GaAsl.
Therefore, we expect LL mixing to significantly modify
the ground-state energies of the FQH and WC states of
the system. Such mixing is expected to reduce both the
FQH liquid gap at v={ and the difference between the
WC and FQH liquid energies, compared to the ideal
(hw,— o) system [16]. Near v= 1, therefore, a cross-
ing of the WC and FQH state energies is possible and, we
believe, is responsible for our observation.

1190

20
18
16f

14f

(D
—
o

T

|

dV/dl

100

L

1 A
-150 0 150 300

VARG

FIG. 4. Four-terminal differential resistance vs measured dc
bias at two filling factors.

Yoshioka [16] first demonstrated the effect of LL mix-
ing on the FQH liquid energy gap by showing that the in-
clusion of the lowest two LL’s substantially lowers A (for
v=1) from its ideal value. From his numerical calcu-
lation as a function of the LL mixing parameter A
=(e*/4neeol)/ho,, he found an ~40% reduction in A
for A=3. He also found that as A increases, the separa-
tion between the WC and the { liquid decreases and, at
sufficiently large A, the WC becomes the ground state
[16]. He gives a rough estimate of the critical A (~6.2)
above which the WC state is favored, but cautions that
this is based on extrapolating the A < 3 data and that for
large A (small hw,) it is necessary to take more than the
lowest two LL’s into account. Since A==5 (at B=5T) in
our 2DHS;, a very small A is expected and a crossing of
the WC and FQH liquid ground-state energies near
v=1 is possible. In agreement with this expectation is
our measured A=400 mK, which is much smaller than
the ideal A=11 K or the A=4 K that we have measured
for a 2DES with roughly the same density and quality as
our 2DHS. Our interpretation of the insulating phase
near v=1% as a hole WC is therefore consistent with
Yoshioka’s results.

It is also instructive to consider the parameters of our
2DHS in a simple picture of crystal-liquid (gas) transi-
tion in a degenerate system of charged particles at 7=0
[27]. In the absence of B, the ground state of a suffi-
ciently dilute system is expected to be the WC. Calcula-
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tions by Ceperly [28] give critical r,=33 (r, is the mean
interparticle separation measured in units of the effective
Bohr radius). At sufficiently large B (low v), the WC is
expected to be the ground state for any r, (Ref. [3] finds
v=1/6.5 as the critical v below which WC has lower en-
ergy). Based on these considerations, Platzman gave a
heuristic but simple “phase diagram” for the transition
between the WC solid and liquid (or gas) in the r; vs v
plane [27], noting that vr, =[e?(zn)'?*/4necol/hw, is in
effect a measure of the LL mixing. In this diagram, for a
fixed v (e.g., v=0.37), if the ground state is the liquid
(or gas) for small r,, a transition to the WC can be ex-
pected as r; is increased. This agrees with our experi-
mental findings that the WC is the ground state near
v=1 in our 2DHS with r,~10, but not in the 2DES
with r;, ~2 which have been studied so far.

Finally, we mention two important points. First, ac-
cording to our picture, in 2DHS with density much
higher than ours such that v=1% is reached at much
larger Aw,, the WC phase near v=14 should disappear.
There exists published data on a high-density 2DHS
which shows a v= 1 FQH state at B=25 T [24]. This
data, however, was taken at high 7 (=0.47 K) and it is
not clear whether an insulating phase will appear near
v=1 at lower 7. Additional experimental and theoreti-
cal work is certainly needed to map out the phase dia-
gram of the WC-liquid (gas) transitions in this system.
Second, it is clear from the arguments of the previous
paragraph that our GaAs 2DHS (p=4x10'" ¢cm ~2?)
with an ;=10 is equivalent to an about 30 times more
dilute (n=1x10° cm ~2) GaAs 2DES. Such a high-
quality, dilute 2D system in GaAs, or any other semicon-
ductor, is unprecedented [20]. It should bridge the gap
between the quantum 2D systems in semiconductors and
the classical system of 2D electrons on liquid He (r,
~1000) and is expected to be a new experimental ground
for exciting many-body physics.

We thank J. Jo and S. W. Hwang for technical assis-
tance, and J. E. F. Frost for providing the (311)4 GaAs
substrate. Support of this work by the National Science
Foundation, the Army Research Office, and the New Jer-
sey Commission on Science and Technology is acknowl-
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Note added.—We have recently fabricated high-
quality 2DHS with larger density. Our preliminary mag-
netotransport results indicate that, as expected, the +
FQH state (and also the + state) gets stronger with in-
creasing p and, for p28x10'% ¢cm ~2, the insulating
phase near v=} disappears. We have also learned of re-
cent work on low-density 2DES at the Si/SiO; interface
where insulating behavior around integer quantum Hall

states has been observed [29].
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