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New Soliton Equation for Dipole Chains
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A simple dipole chain is the main building block of many physical models in solid state physics. Here,
just such a chain of essentially identical dipoles is investigated by considering nearest-neighbor interac-
tions of the individual charges in the dipoles. A three-dimensional model is found. In a restricted, two-
dimensional picture, a nonlinear, second-order partial diA'erential equation, more general than sine-
Gordon, results. Soliton-kink solutions are found.

PACS numbers: 77.30.+d, 41.70.+t, 46. 10.+z

Phenomena involving molecular chains are sometimes
investigated by looking at models of arrays of dipoles.
Examples are furnished by polymer chains and ferroelec-
tric crystals such as NaNO2, to name two [1,2]. Instead
of considering a chain of dipoles as an oscillator system,
or else considering a special interaction energy between
dipoles, as Pouget and co-workers do for their theory of
NaNO2, we will look at central interactions between indi-
vidual charges comprising neighboring dipoles.

We consider a chain of identical dipoles, each com-
prised of charges q+ and q, with masses m+ and m
a fixed distance pp apart. Initially, the spacing between
dipoles is Rp. The dipoles are free to move away from
their initial positions, but such that departures are much
smaller than Rp. We also assume pp(&Rp. However, no
restriction is put on the dipole rotations.

In our theoretical treatment, x+ and I denote the po-
sitions of the charges comprising the dipole at x. Thus

p =x+ —x is a constant-magnitude (pp) vector. The
equations of motion of the two charges comprising our di-
pole have the form

m+x+ =q+E(x+)+k(x+ —x ),

poles, and A, is the Lagrange multiplier ensuring the con-
stancy of ip i. Eliminating A, , we find

mx =q+E(x+)+q E(x ),
p x [p —q+(m+) 'E(x+)

+q (m ) 'E(x )] =0,
where

x+ =x+(m /m)p, x =x —(m+/m)p,

m =m++m, M =m m+/m .

(2)

(3)

(4)

The force acting on a charge q+ at x+ and due to a di-

pole at ( is, in terms of the electric field potential p,

E(pg x+) = —V„+[q+tt (g+ —x+)+q y(( —x+)]

(s)

and a similar expression for E(p~ x ). This leads to
the following form of (2) and (3):

mx = —V„g4~ „,

m x =q E(x ) —X(x —x ).
Here E is the external electric field of all the other di-

where

p x p+M 'V„g@&„=0,

+g, , = (q+) '[(q+) 'tie(g+ —x+)+q q+ [tP(( —x+)+tt ((+ —x )]+(q ) 'tt (( —x )] .

We now use our approximations that departures of the centers of mass of individual dipoles from their initial posi-
tions, and also the charge separation in the dipoles, are both small quantities. For nearest neighbors we have

g
—x =Rp+Bg —Bx

and, for individual positive charges in neighboring dipoles,

g
+ —x+ =Rp+ Bg —Bx+ (m /m + ) (p~ —p „),

(9)

(10)

where the four last terms are small. There will be similar expressions for g+ —x, g
—x+, and g

—x . Denoting

u =8/ —Bx,

we expand p((+ —x+), etc. , in a Taylor series, neglecting terms higher than quadratic in u and p. We also neglect
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—[Vp]R„as these terms will cancel when added up over an infinite array of dipoles. We are left with

I0(g+ —x ) =II)(RO)+ 2 [uu+2(m /m)u(p~ —p„)+(m /-m) (p~ —p„)(p0 —p„)]:[VVI']R, ,

etc. When these expressions are introduced into (6) and (7) and nearest-neighbor interaction assumed (x =x„,
(=x„-) ), we obtain

bx„—a)t) )C. [h'(bx„) +aA'(p„)] =0,

tt„x [ji„—a 'a)t2)C 4'(bx. )+ah'(p„)+ p(p. )}]=0,
~ p. (

=go,

where

62(bx„) bx„~) —28x„+bx„—), C =[VVI0]tt, , tot)) =m '/ (q++q ),

a)tq) =m M '/ (q+m —
q m+), a=(M/m) '/

toter)/to()), P=2q+q /a(q+ —
q )

Assuming I0 to depend on distance only, we have

C [VV&] tr
= (P'/RP) ( I —R0RP/RI) ) + (RPRP/RI) )II)" .

(i 2)

(i 3)

(i4)

(15)

Assuming the chain of dipoles to be initially situated along the x axis (x =x)) we have that C is diagonal: C)) =II)",

C22 C33 = t) /R. Table I gives values of CI ) and C22 for some choices of II).

If we now confine considerations to two-dimensional displacements and rotations (motion in the x-y plane),

Ro = (Rp, 0), x„(v„,)v„),

p„=(p„',p„') =pa(cos8„, sin 8„),
the equations of motion become, from (12) and (13),

i', —
a()~ C))h)( v„+ap„') =0,

w„—to/'))C226 (w„+ap„)=0,

ttnttn ttnttn+Pa a)/2)(C) ) C22)ttnttn+to(2)[CI I(~ ttn)pn C22(~ pn)pn]

(i6)

(i7)

(19)

+a ' [C) ) (6'v„)p„' —C22(A')v„) p„'] =0. (20)

An important special case is obtained for neutral dipoles, for which q++q =0 and a)(~) =0, v„=w„=0. Taking the

continuum limit, replacing 6 by R08/|)x, 8„by 8, and using (17) in (20), we have

8 —
—,
'

Ro to/z) f [C) ) +C22+ (C22 —C) ) ) cos28] 8,„+(2/RI) ) (C22 —C) I ) (1 —
—,
'

RI)8„)sin 28}=0. (2i)

a2 + (cosP —cr) " + 1
— sinP =0.

Bt 2
(22)

TABLE I. Diagonal components of Cj.
C))

I /R 2/R0
I n(R/R) I/R$
y0(r" r") 18')/Rj-

(r =R/R)

C22 =C33

—I/R0
—I /Rj

0

Comments

Coulomb potential
Infinite stack of dipoles
Lennard-Jones potential;

Rp taken at the
minimum, 2' R

We now rescale the variables and introduce a new con-

stant,

x~ 2x/Rp, t~ 2' (CII —C2q)' to(2)t,

P =28, o = C) )+C22

C)) Czz

and obtain (21) in a compact form:

Equation (22) is the equation for (twice) the alignment
of a dipole at x when all motions are restricted to the x-y
plane. It is our most important result and differs from
the ubiquitous sine-Gordon equation by two terms.

For the infinite stack of dipoles (o =0), we are describ-

ing the effect of the coupling of infinite, rigid chains
(stacks) of dipoles. Each such chain is allowed to move

in the plane perpendicular to its axis and is coupled with

its two nearest neighbors in this plane. All motion along
the chain has been neglected. In the remaining models
(o) 0), the coupling is between individual dipoles and

coupling of neighboring chains is neglected (in particular
out-of-plane motion is neglected).

The Lagrangian for (22) is

L=—1 BP 1 t)+—(cosp —cr) +cosp
2 Bt 2 Bx

and the two conserved densities following from Noether's
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u —cos(p/2)

is used, a movable essential singularity appears. Thus, in

what follows, we consider our equation to be non-
integrable.

Exact solutions to (22), representing traveling waves
and solitons (kinks) are easily found. Take

pp=p (() ( =x vt

to obtain

2

(v o'+cosPp)
&

+ ( I Ppg) sinPp =0 .2 d pp

(23)

(24)

When this equation is multiplied by dpp/dg and then in-

tegrated, we get
7

dPp 2(C+cosPp)
25

v'' —cr+ cospp
'

t.
'- —o —1&0 1+ C~ —1.

From now on we assume i
-' —

I
—o. & 0. When

v"- —cr=C, the solution is pp=2' (x —vt)+pp.
In contradistinction to the case for the sine-Gordon

equation, we have a lower bound on ~ for kinks to exist
which is (I+o) ' . This, in terms of the original vari-
ables, is RGCP( cot», and for equal masses and charges in

a Coulomb potential,

theorem are

p, l.~,
—I = —p ——, (cr —cosp)p„' —cosp, p„l/j =p, p,

The constant o is & for the Coulomb potential, 0 for an
infinite stack of dipoles (logarithmic potential), and I for
all Len nard- Jones-type potentials.

Equation (22) does not pass the Painleve test as ex-
tended to partial differential equations [3]. When the
transformation

tion, taking

p gp l (Ax —col )

and linearizing, we obtain the dispersion relation

cp =I —(I —a)k-',

'stable for o.= l. If o. & 1, instability can theoretically set
in if k & (I —o)'/. However, the possibility of this is
limited by the spacing of the dipoles, k && x.

The most interesting case, however, is C =1. Now the
range of pp is largest and is —tr, x. At the two end points
of this interval, we have that

c)(pp() '
c)pp

This situation corresponds to a kink (see Chap. 6 of Ref.
[4]).

There is also an isolated pair of constant solutions for
C= I, pp= —rr. As O=pp/2, these solutions correspond
to all dipoles perpendicular to the x axis and uniformly
polarized. These solutions are in principle unstable, as an
analysis similar to the above for P=0 will show. This is
the case for both pp tr and pp= —tr, taking p=p+Sp:

cp-= —I+(I+o)k
Instability sets in if k ((I+cr) ' . However, small k
(long-wave perturbation) may be excluded by the physi-
cal limitations of the system.

Here we will just remark that the kink solution men-
tioned above, to be discussed in more detail in what fol-
lows, "connects" these two constant solutions in the far
field (say, all dipoles pointing down on the far left

pp
—tr, and all pointing up on the far right pp = rc).

For the soliton-kink case, C= I, the equation for pp~ as
a function of pp, Eq. (25), can be integrated. We have

7

v,.„;,=22' ' /m' -'R' ' dpp

dg

4cos (PG/2) —o —1&0
v

-' —o+ I
—2cos'(Pp/2)

'

and for a logarithmic potential, it is this without the fac-
tor 2' -. Plasma physicists will note the similarity of
v, ,;,/Rp to the plasma frequency.

Phase-plane analysis, in which we draw (dPG/dg) as a
function of Pp for different possible C, will help us explore
the possibilities. For C such that —

1 & C & 1, a segment
of the right-hand side between pp= —arccos( —C) and
+arccos( —C) will be non-negative and this corresponds
to a periodic wave structure Pp((, C). The special case
C= —

I corresponds to a constant solution pp=0 and the
segment has shrunk to a point. In physical terms, the di-

1

poles are aligned along x. If we perturb around this solu-

2k-= —o+1
&1, 0=

2

Straightforward integrations yield the solution in para-
metric form:

(26)

(there is also a similar solution for C= —I, v'- —a
+1 & 0, but we see from the numerical values of cr that it
is unphysical). Thus

d0 + coso
(v —o+ I ) ' '(I —k sinO) '

(27)

(—(p = ~ (v —cr+ I ) ' k arcsin(k rI ) ——,
' (I —k '-) '/'-In ( I —

rI ) [ I + k rt + ( I —k ) '/-'( I —k tI ) '/ ]
(I ~ rl)[I k2rt+(I k 2) I/2(l k 2 I2) tI/2]

(28)

0 =arcsin g .
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(32)
We now assume

bP=e' ~ 'IbP((), 8P periodic,
N=N —kv

take k to be small, and expand co and bP; thus,

co=roik+cozk + . , bP=bPp+kbPi+
This procedure leads to a hierarchy of equations. In zero
order we find 8Pp=dPp/d(. First order gives BP~ in terms
of known functions and co[. In second order we obtain a
consistency condition for the removal of secular terms.
This condition is, in the laboratory system and without
the order suffix,

co ' I/k =v —a(l —C) 'i ln(1 —C)
+ ( y, + t y; ) ( I —C) [In ( I

—C) ]
Here I —C is assumed small at the very end of the calcu-
lation and a, y;, and y;- are constants involving v and
v —cx but not C. Thus in the soliton-kink limit C l,
we have co ' kv, and this proves marginal stability
with respect to long-wave and slow perturbations. The
nonlinear waves, for which C & I, are unstable [4,6,7].

For cr=0 (infinite line dipoles) we can extend (22)
phenomenologically, substituting 8„+t)- and P„+P.- such

From a mathematical point of view (u could be com-
plex, giving some interesting new solutions [5]. However,
in our picture 8 is an angle in real space and so (o is real.
Take gu =0. We have two solutions. One is such that

8(- ) = —n/2, 8(0) =0, 8(+ ) =n/2,
and the other is its mirror image [g —( is a symmetry
of (22)]. Thus 8 represents a kink, connecting a far-field
configuration in which all dipoles are pointing down to
one in which all are pointing up, and 0 undergoes a half-
twist through z. The soliton character of the solution is
seen by looking at d8/dg, the steepness of the kink. It is

seen from a small-g expansion that

8= ~ g/(vz —cr+ I ) ', g small, (29)
and so d8/dg is —(v —o —I) 'i (v —I) ' for the
sine-Gordon soliton (see Chap. 7 of Ref. [4]). Thus kinks
for which v —o —

1 is small but positive are very steep,
the d8/d( soliton having a large amplitude.

To investigate the in-plane stability of our solution
(28), we will not use its exact form, but just the fact that,
for C & I, 8(g) is periodic. Chapter 8 of Ref. [4] or else
Ref. [6] should be consulted for the procedure. Here we
will just give the bare outline. We work in g, r coordi-
nates and revert to Pe =28,

(=x vi, r=-r, a„=a,, e, =a, -va, (30)
and treat the soliton (kink) as a limit of a series of
periodic waves with wavelengths tending to infinity as
C I. Next we linearize (22) around one of these
periodic, nonlinear wave structures. Thus

P=Pu(g, C)+bP(g, .C), C&1, (3I)
and bP satisfies

[t), —2vl)~, + (v —cr+ cosPu) t)~
—

Pu~ sindgu|I~

+cosPu(l i Agua) PutgsinPe]bP =0.

as to include out-of-plane, z dependence of P (which is
still planar). The basic kink structure remains the same,
but in the stability analysis we now have k =kg +k-.
Stability is still obtained in the kink limit.

The whole stability analysis outlined above is limited to
small k. A general analysis for arbitrary k has not been
performed for this problem. Previous work on mathemat-
ically similar problems [8] leads us to expect that, al-
though in theory these equilibria tend to be unstable, in

fact growth rates tend to zero in the kink limit.
A completely different problem, not considered by us,

is that of stability with respect to out-of-plane perturba-
tions when our dipole chain is a component of a full,
three-dimensional crystal structure and o =0. When in-
teractions between chains could introduce new instabili-
ties, our analysis should be considered as just a first step
towards treating the full problem; however, it is quite apt
as it stands when treating the single-chain problem.

In any case, even when considering a crystal, a proper
understanding of the dynamics of one chain must precede
a full, three-dimensional array treatment.

In conclusion, ferroelectric crystals, one-dimensional
organic polymer chains, and other ordered structures can
be studied at the molecular level by looking at a simple
dipole chain model.
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