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Crystallography is given a new formulation that abandons its traditional reliance on microscopic
periodicity. Both periodic and quasiperiodic materials are treated on an equal footing by redefining the
point group of a material in terms of indistinguishable (rather than identical) densities. The new para-
digm is simpler and broader than the widely used "superspace" extension of the crystallographic
categories to quasiperiodic materials. This is illustrated by a comparison of how the two schemes treat
certain Bravais classes.

PACS numbers: 61.50.Em, 61.42.+h

M icroscopic periodicity underlies the classification
scheme of crystallography, begun 150 years ago with
Frankenheim and Bravais's enumeration of the classes of
crystal lattices [I]. By the time quasiperiodic materials
were discovered —incommensurately modulated crystals a
few decades ago and quasicrystals within the last
decade —periodicity had become so enshrined as the sine

qua non of the crystallographers' taxonomy that the ex-
tension to quasiperiodic materials was achieved only by
expressing them as three-dimensional sections of materi-
als periodic in more than three dimensions, to which the
higher-dimensional crystallography of periodic materials
could be applied. In this Letter I argue that this ascent
into superspace in search of periodicity leads to a crystal-
lographic scheme which is excessively complicated and

potentially misleading. A simpler and unified scheme for
the classification of both periodic and quasiperiodic ma-

terials can be formulated and constructed without ever

leaving three dimensions.
Quasiperiodic materials lack perfect translational sym-

metry but have the property —reminiscent of but weaker
than periodicity —that given any subregion, a translation
can be found through a distance of the order of its dimen-

sions that takes the subregion into an identical one. Al-

though not often emphasized, there is an analogous weak-

ening of rotational symmetry: The image under ap-
propriate rotations of any region of certain quasiperiodic
materials can also be found in the unrotated material at a
distance of the order of the dimensions of the region.
Periodic materials possess these properties in a much

stronger form: The required translation can be through a

microscopic distance, independent of the size of the

subregion, and the coincidence with the original material
is not confined to a subregion, but is perfect.

The essential character of these quasisymmetries is

precisely captured in the concept of indistinguishable, as

opposed to identical, densities. Two densities are indistin-

guishable if any substructure on any scale that occurs in

one occurs in the other with the same frequency. Putting
it analytically, two densities are indistinguishable if their
positionally averaged n-point autocorrelation functions
are the same for all n. Two periodic densities can be in-

distinguishable only if they diAer by at most a transla-

tion, but two indistinguishable quasiperiodic densities
need not be so simply related. The key to reformulating
crystallography without requiring periodicity is this: One
defines the point group of a material to be the set of
operations from 0(3) that take the density into one that
is indistinguishable from the original.

Should a material happen to be periodic so that indis-

tinguishability reduces to identity to within a translation,
then one can combine the point-group operations with

such translations, arriving at the conventional classifi-
cation in terms of subgroups (the crystallographic space
groups) of the real-space Euclidean group that leave the
material identical to what it was. Should the material be
quasiperiodic, however, translations cease to be relevant:
Since indistinguishability is based on positionally ai. er-
aged correlation functions, an operation in its point group
leaves a material indistinguishable regardless of the ori-
gin about which it is applied. Basing the point group on

indistinguishability might thus appear to entail the loss of
some important additional structure, but that structure
can be recovered in the quasiperiodic case and usefully
reformulated in the periodic case by noting that the most

analytically straightforward definition of both quasi-
periodicity and indistinguishability of densities is to be
found in Fourier space.

Densities of quasiperiodic materials are defined to be
superpositions of plane waves whose wave vectors can be
expressed as a lattice [2] of integral linear combinations
of 3+d primitive wave vectors that span a three-di-
mensional space and are linearly independent over the in-

tegers. A material is quasiperiodic if d &0 and merely

periodic if d=0. Two densities are indistinguishable if
and only if the products of their Fourier coe%cients over

any set of wave vectors summing to zero always agree.
When combined with the definition that a point-group
operation leaves the density indistinguishable, this leads

straightforwardly to a classification scheme, valid for

periodic or quasiperiodic materials, that is based on the

point group and the phase relations between density
Fourier coe%cients at wave vectors connected by point-

group operations [3,4].
The virtues of Fourier space, even as the venue for the

traditional crystallography of periodic materials, were
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celebrated by Bienenstock and Ewald [5] three decades
ago. They pointed out that the 230 crystallographic
categories of SchonAies, Fedorov, and Barlow could be
derived simply and efficiently in Fourier space as classes
of phase relations between density Fourier coefficients at
wave vectors related by point-group operations. Quasi-
periodic materials not then having attracted serious at-
tention, Bienenstock and Ewald presented their method

only as an alternative approach to the ordinary crystal-
lography of periodic materials. But when the formulation
of crystallography is freed from its traditional reliance on

periodicity, their Fourier-space classification scheme
emerges unavoidably as the natural way to organize the
broader class of quasiperiodic materials.

This broader organization continues to use the crystal-
lographic concept of Bravais class. While the Bravais
classes of conventional crystallography are usually viewed

as classes of lattices of translations that express the real-

space periodicity of the crystal, there is an alternative
view of the lattices in a Bravais class which continues to
make perfect sense for quasiperiodic materials. A (re-
ciprocal) lattice is the closure under subtraction of the set
of all wave vectors at which the density has nonvanishing
Fourier coefficients. These are the lattices of most im-

mediate concern from the point of view of diffraction, be-

ing directly deducible from the observed Bragg peaks by
application of the familiar Laue rules. In the crystallo-
graphic case two lattices with the same point group [6]
are in the same Bravais class if it is possible to interpolate
[7] between them through a family of lattices all of which

have that point group. In the quasiperiodic extension of
the concept of Bravais class, the lattices of wave vectors
in the family interpolating between two 3+d lattices
should in addition have the same d.

Reference [4] spells out the procedure by which one
calculates the finer subclassifications of materials with a
given point group and Bravais class (which are the space
groups in the periodic case), applying the method to a
unified treatment of both crystals and quasicrystals.
Here I shall show how a scheme based on indistinguish-
able densities differs from the superspace scheme by com-

paring how they each describe a particular class of in-

commensurately modulated crystals. Surprisingly, the
two schemes lead to different categories. The artifact
of superspace turns out to be built into the current
classification of incommensurately modulated crystals,
henceforth designated as the JJdW scheme [8]. As a re-
sult the unambiguous applicability of the scheme is limit-
ed to materials whose diffraction patterns reveal a partic-
ular subset of strong peaks (a "lattice of main re-
flections") that can be associated with a crystallographic
lattice in ordinary three-dimensional space, the remaining
weaker peaks ("satellites" ) having nonzero components
in the d-additional superspace dimensions.

This state of affairs shows up even at the rudimentary
level of Bravais class, where it can be illustrated by exam-
ining the Bravais classes for the simplest quasiperiodic

materials with point groups from the cubic crystal sys-
tem. These Bravais classes contain lattices of three-
dimensional wave vectors that can be represented as in-

tegral linear combinations of six integrally independent
vectors, with a symmetry group which is either the full

cubic group m3m or the full tetrahedral group m3. A
detailed computation of the (3+3) cubic Bravais classes
has been given elsewhere [9]. Using the fact that a cubic
(3+3) lattice must have at least the symmetries in m3
one easily establishes that it can be viewed as a set of in-

tegral linear combinations of six vectors constituting an

orthonormal triad, and a second triad, identically orient-
ed but rescaled by an incommensurate factor. One also
establishes that the set contains all vectors with even in-

dices, so that a general lattice can be specified by listing
the finite set of vectors indexed only by 1's or 0's, the full

lattice consisting of the sums of these vectors with all vec-
tors of the even sublattice. Since such finite sets must
themselves have cubic symmetry, and be closed under ad-
dition modulo 2, they are readily enumerated, and yield

just nine distinct Bravais classes.
These nine Bravais classes are listed in Table I. The

six with symmetry group m3m contain lattices given by
the sums of all pairs of vectors from two ordinary crystal-
lographic lattices, identically oriented but incommensu-
rately scaled, each of which can be from either the crys-
tallographic P, F*, or I* Bravais class [IO]. In addition,
there are three Bravais classes with only tetrahedral sym-

metry. The simplest of these, To, consists of the even

sublattice and the sums of its vectors with the three in-

dexed by [101,011], [110,101], and [011,110]. A lattice
from the Bravais class T~ is given by a To lattice and the

P+P
I' + I'

P+ I'
P+ F'
FIN + I III
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TABLE I. The nine (3+3) cubic Bravais classes. The JJdW
symbols and numbers are given in the second column and, when
a class of lattices of three-dimensional wave vectors occurs un-

der more than one name in their catalog, in the third and fourth
(in curly brackets, to emphasize the redundancy). The designa-
tion P+I* could equally well be taken to be I*+P; the order is
immaterial (and similarly for P+F* and F*+I*). For ap-
propriate values of the incommensuration parameter, the
tetrahedral To, T~ (in either of its JJdW manifestations), and
T. lattices acquire icosahedral symmetry and become the quasi-
crystallographic icosahedral F, P, and /* lattices, respectively.

Cubic
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sums of its vectors with [111,000], while a lattice from T2
is given by a TD lattice and the sums of its vectors with
[111,000], [000,111],and [111,111]. One readily verifies
that these nine Bravais classes are distinct and contain
lattices of the appropriate symmetry. Reference [9] es-
tablishes that there are no other 3+3 Bravais classes with

symmetry groups m 3m or m 3.
The JJdW classification scheme derives the 3+3 cubic

Bravais classes in quite a different manner. One starts
with a crystallographic lattice from one of the three crys-
tallographic Bravais classes (the lattice of main reflec-
tions) and an incommensurate modulation vector, whose

images under the group m 3m or m 3, together with the
crystallographic lattice, generate a 3+3 lattice (called a
"Z module" by JJdW). One thus introduces at the start
an asymmetry between vectors associated with a crystal-
lographic lattice and vectors arising from an incornmens-
urate modulation. The Bravais classes one subsequently
arrives at are identical to the nine described above, but
they now arise in various guises, depending on which
rank-3 crystallographic sublattice one happens to single
out as the lattice of main reflections. These various ways
of describing one and the same set of three-dimensional
wave vectors are treated in the JJdW scheme as distinct
Bravais classes, labeled by the conventional crystallo-
graphic designation for the lattice of main reflections fol-
lowed by a specification of the modulation vector, as indi-

cated in Table I.
The redundancy (in terms of three-dimensional wave

vectors) of the JJdW scheme is particularly evident in the
case of the P+I* and P+F* Bravais classes, each of
which appears in two guises depending on which crystal-
lographic sublattice is taken to be the lattice of main

reflections and which describes the enrichment of the lat-
tice of main reflections by the modulation vectors. The
appearance of F*+I* in the JJd W scheme is further
complicated by the presence of a third (P) crystallo-

graphic sublattice. The tetrahedral Bravais class T] also
has two representations as a lattice of main reflections
and satellites, which are treated by JJdW as distinct Bra-
vais classes.

One might argue that the redundant JJdW Bravais
categories should be maintained as distinct Bravais
classes in spite of their identity as classes of lattices of
three-dimensional wave vectors, because most currently
known incommensurately modulated crystals are clearly
best described by a particular one of the redundant
forms. Thus an ordinary crystal with a primitive cubic
lattice can undergo a displacive phase transition charac-
terized by frozen-in phonons along [111]directions, end-

ing up in JJdW's class Pm 3m(aaa), while a crystal with

a real-space F lattice with frozen-in [100] phonons would

be in their Fm3m(a00) class. We, however, would place
both materials in the single Bravais class P+I*, even

though they arise in very different ways and are easily
distinguished. For although this distinction is important,
it ought not to be made at the level of Bravais class, as
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the superspace approach induces one to do.
The problem with the JJdW scheme is that the Bravais

class of a material is no longer determined by the
Fourier-space locations of the Bragg peaks, as it is in the
periodic crystallographic case; one requires, in addition,
information about the relative peak intensities beyond
+hat symmetry requires, since the lattice of main re-
flections is identified from the strongest peaks. But there
are sound reasons for keeping peak intensities out of as
fundamental a notion as Bravais class. If the Bravais
class can change with the peak intensities, one must intro-
duce questions of degree into a concept otherwise based
entirely on symmetry: How much stronger do certain
peaks have to be for the determination to be unambigu-
ous? Putting it another way, one can specify a family of
densities that interpolate between the two Bravais classes
without any change in point group or rank [I I]. One can
avoid an arbitrary boundary between Bravais classes by
excluding intermediate materials from the domain of ap-
plicability of the scheme, but since materials exist (quasi-
crystals, incommensurate intergrowth compounds) whose
diffraction patterns reveal no hint of a lattice of main
reflections, one is then required to impose a distinct crys-
tallography on such materials, when a perfectly satisfac-
tory scheme already exists.

For those materials that do admit a lattice of main
reflections, it is obviously important to supplement the
specification of the Bravais class with a statement of
which of the possible crystallographic sublattices contains
the strong peaks. Ordinary crystallography offers many
analogies. Consider, for example, a cubic crystal which
undergoes a uniaxial compression to tetragonal (which
could be viewed as a frozen-in k=0 phonon). There is

a clear and important difference between slightly com-
pressed face-centered-cubic or body-centered-cubic crys-
tals. But the compressed crystals both belong to the sin-

gle centered-tetragonal Bravais class. One would not
build this difference into the concept of Bravais class with

a special reformulation of crystallography containing two
versions of the centered-tetragonal class, restricted in ap-
plication to nearly cubic materials.

The sole advantage of searching in superspace for a
classification scheme based on periodicity is that it re-
lieves one of having to take a radical new look at the
foundations of ordinary crystallography. The disadvan-

tages are displayed in Table I. A celebrated analogy
comes to mind. If the Sun were the only thing of interest
in the heavens, it ~ould be foolish not to regard it as
moving around the Earth. Because this view became
firmly entrenched, generations of astronomers had to be-
come adept at manipulating epicycles to account for the
motions of the planets. While it was wrenching to shift to
a heliocentric perspective, the eventual simplification in

the more broadly applied scheme more than made up for
the pain of abandoning the Ptolemaic view. When all

materials of interest were periodic, a crystallography
based on periodicity grew and thrived. Epicycles began
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to proliferate, in the form of superspace groups, when the
scheme was extended to quasiperiodic materials without
abandoning its conceptual reliance on periodicity. While
unwilling to burn for it at the stake, I would like to sug-
gest that others could spare themselves significant pain by
abandoning Ptolemaic crystallography and learning how
to classify both periodic and quasiperiodic materials, not

by ascending to superspace in search of periodicity, but
by resting the foundations of crystallography on the
three-dimensional concept of a point group of operations
that change the density into something indistinguishable.

My appreciation for the power of a theory of symmetry
based on indistinguishable densities developed during
many collaborations with Daniel Rokhsar, David Wright,
Jason Ho, and David Rabson. I am indebted to Ron
Lifshitz for joining me in a three-dimensional derivation
of JJdW Bravais classes, and to Sander van Smaalen and
Ted Janssen, whose thoughtful responses to that deriva-
tion led me to wonder whether crystallography might be
in need of a paradigm shift. Veit Elser, Chris Henley,
Leonid Levitov, and Michael Widom commented helpful-

ly on earlier versions of the manuscript. This research is

supported by the National Science Foundation, Grant
No. DMR 8920979.
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