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Theory of Quantum and Polaron Effects in Depinning of Dislocation Kinks
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A microscopic theory is presented of stress-assisted fluctuational breakaway of dislocation kinks from
pinning centers. It is shown that a polaron lattice distortion near a pinned kink essentially aflects the
magnitude of energy fluctuation required to activate a jump over the pinning barrier. The eAect of
quantum lattice fluctuations on the low-temperature depinning rate is analyzed. The role played by the
kink geometric width in depinning phenomenon is disclosed.

PACS numbers: 61.70.Ga, 62.20.Fe

The study of kinks on dislocations has proved fruitful
in theories [I] of plastic flow and strength of crystalline
materials. Although various aspects of kinetic behavior
of kinks in pure crystals have received considerable atten-
tion [2], much work needs to be done to clarify the situa-
tion ~here the kink motion is hindered by local pinning
agents (such as solute atoms, impurity clusters, radiation
damage, etc.). In this connection, understanding of mi-
croscopic mechanisms which control the breakaway of
kinks from efficient pinning centers is of fundamental im-
portance.

The phenomenological descriptions [3] of the depinning
process rely on an assumption that in a wide range of
temperatures T, a kink acted on by a stress i less than
the Peierls stress rI breaks away from its pin with an
effective rate v= voexp[ —E(r)/T], where vo is a rather
ill-defined attempt frequency, and E(r) is the activation
energy (we set ktt = I). As regards the stress dependence
of E(r), it is usually assumed that E(r) =Uo zr, —
where the pinning barrier height at ~ =0, Uo, is de-
creased by the work z r done by the stress, and z is the
activation volume of the process, maintained by environ-
mental fluctuations.

One cannot escape the feeling that the aforementioned
absolute reaction-rate formula gives an oversimplified
description of the breakaway process for at least two
reasons: Clearly, the Arrhenius behavior of the rate will

no longer be valid at sufficiently low temperatures, when
quantum environmental fluctuations are expected to dom-
inate. Moreover, the explicit form of the activation ener-

gy involved tells one nothing about the physical mecha-
nism by which the energy is supplied to the activated
kink. As is known from the classical work of Eshelby [4],
an eAective mechanism of energy gain from lattice fluc-
tuations is provided by the kink-phonon coupling.
priori, it seems possible that this coupling, if strong
enough, may be able to cause an appreciable distortion of
the host lattice near a pinned kink. If this is the case,
then there is a good reason to suspect that such a polaron
efIect can essentially modify the simple phenomenological
picture of the depinning process.

In view of all this, one concludes that environmental

eAects on depinning kinetics are only vaguely understood.
In an attempt to clarify the situation we propose in this
Letter a microscopic theory of the dislocation-kink depin-
ning process. Our approach takes into account the cou-
pling of the kink to phonons, the lattice distortions, and
other pertinent processes that have not been appreciated
in previous studies.

Consider for definiteness a kink of height a (the lattice
spacing) in a parent screw dislocation with Burgers vector
b =(b,0,0) directed along the dislocation axis chosen as
the x direction. The well-known model [l,4] treats a kink

as a one-dimensional quasiparticle constrained to slide

along the straight dislocation line. A specific feature
which distinguishes the kink from ordinary mobile defec-
tons [5-7] in solids is its geometric width. In the isotrop-

ic continuum model of a crystal with elastic modulus 6
and host atom mass M, the width w of a continual kink

(w))a-b) is related to its efl'ective mass p by [l,41

w/a-M/It —(G/rp)' )) I, if one assumes as usual that
the dislocation line tension is 5-Ga .

With this background relevant to the foregoing discus-
sion, consider now a kink pinned down by a single, immo-
bile pin located at x=0. Since the true interaction be-
tween the pin and the kink is not known, we construct a
simple model in which an attractive pinning potential
U„;„(x) is taken to be

—Uo+ —gx ~ I x I
(xo,

Up, „(x)= '0

Up= -'(xo.

Here, x denotes the kink center-of-mass position on the
dislocation line, the spring constant ( characterizes the
strength of the pin-kink interaction of range xo, Uo is the
depth of the pinning well, and the zero of energy is taken
at the bottom of the kink band [II]. The expression (I ) is

supplemented by the condition required for the model to
be free from self-contradiction: a (xo«((„/()a, where

g, =Ga —Mtoo is the standard atomic spring constant in

solids, and A~~ =0 is the Debye energy. The left-hand
inequality in this condition imposes a natural lower bound
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on xo, while the right-hand one serves to guarantee that
the pinning force is much less than the typical interatom-
ic forces in solids (i.e., ensures that the model describes a
breakable pin, rather than an anchoring one). In the fol-
lowing the pinning potential is assumed to be sufficiently
strong, more specifically that

(» (,—(p/M )(, , (2)

l g(x —x, )', ~x~ (xp,
U(x) ='—

U —f(x —xp), ixi ~ xp.

In Eq. (3), x,. =yxp, y=t/t„„and U=Up(l —y) is the
stress-dependent height of the pinning barrier. In our
model t„,=2Up/v plays the role of the stress required to
produce a mechanical breakaway, and the volume associ-
ated with the pin is v =abxo.

At this point a comment on the nature of the pinned
state in (3) should be made. Strictly speaking, after the
stress has been applied, the pinning well becomes meta-
stable because of the possibility of tunnel crossing of
the pinning barrier. However, in view of the condition
that [1,4] t ( t p, Eq. (2) suggests that y ( t p/t—(tp/G)' (.,a/exp« l. It then follows that the tunnel
transparency of the barrier is extremely small. [More
precisely, the WKB tunnel widths of the low-lying quan-
tum levels in the well (3) are exponentially small com-
pared to the characteristic energy parameters hrp, hroD. ]
Therefore, in the limit T«hrp assumed hereafter, the
pinned state is adequately described by a quasistationary
state [7], occupying the ground-state level sp=hrp/2 in

the well in (3).
Thus far, we have neglected lattice fluctuations. To

pursue their effect on the bare pinned state, one needs to
specify the many-body Hamiltonian of the entire kink-
phonon system. For the sake of simplicity, here we con-
centrate our interest on the case of coupling to longitudi-
nal acoustic phonons, and treat the latter in the Debye
approximation. Then, guided by the analogy with suc-
cessful descriptions [10,11] of various one-dimensional
quasiparticles coupled to 3D phonons, we write the full
Hamiltonian as

H = —(0 /
'
p ) (d/dx) +U(x)

+(2M) 'g(i,'+M'~,'g,')+H;„, , (4)

and Up»hrp, where rp ((/p)'i is the oscillation fre-
quency in the pinning well. For such a strongly pinned
kink the effect of crystalline resistance on its dynamics
may be easily ignored [9]. Therefore, the total potential
felt by the pinned kink upon application of a constant
external stress takes the form U, (x) =U„;„(x) fx-,
where f=tab It w. ill prove convenient to transpose the
zero of the kink energy to the bottom of the shifted well
in this potential and represent the total potential in the
following physically equivalent form:

)gq'( =(Mrpq) ')Cq)exp[ —(q„x/2)'], (6)

where x =(b, /pro) i is the localization length (quantum
size) associated with the pinned kink. This polaron lat-
tice distortion dresses the kink by a cloud of virtual pho-
nons. As a result, the energy of the dressed pinned state
reduces to sp=sp —2A, where 2h=gqMrpq~gq( is twice
the elastic strain energy stored in the self-consistently de-
formed lattice. With the aid of Eq. (6) one can calculate

by transforming the sum over q into an integral
throughout the Brillouin zone. To zeroth order in the
quantity x/w-(sp/Up) '

g,,xp/ga «1, we find that

4 =4„(a/w)[ln(w/a)+ I],
(7)

&, =(Ga b) /rrMs -Ga
This important result, which shows that the lattice relax-
ation energy is not sensitive to the pinning strength,
seems puzzling initially. However, this fact is just a man-
ifestation of the extended character of the dislocation
kink. One can develop a physical feel for (7) by referring
back to our basic equations (5) and (6). It is then seen
on quick inspection that only phonons with wave-vector
components q„(min[w ', x 't =w ' are expected to
interact essentially with the pinned kink. Accordingly, a
cutoff at q, —w ' naturally occurs in the Brillouin zone,
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with H;„t describing the kink-phonon interaction, which
in terms of the set Q=[gqj of the coordinates for pho-
nons of wave vector q and frequency rpq=sq is H;„i
=PqCqgqexp(iq„x). Pq is the momentum conjugate to
gq, s is the sound velocity in the crystal, and the relevant
features of the interaction are encapsulated in the cou-
pling coefficients Cq. Using elasticity theory [12], and
proceeding along the lines worked out in Ref. [41, we ob-
tain the following expression for Cq.'

Cq =2i(I/iV) 'i Gabq '(qn) sech(wq, /2),

where n is a unit vector normal to the dislocation slip
plane, N is the number of unit cells in the crystal, and we
have assumed in deriving Eq. (5) that the shape of the
Peierls potential for the parent dislocation is sinusoidal
[1,2,4].

We are now in a position where we can address the
quantum states of the Hamiltonian (4). Once again we
recall the condition Eq. (2), which now implies that the
pinned kink moves faster than the lattice can respond.
This makes it possible to present the eigenfunctions of
H in the adiabatic manner [5], +11(x,g) =pl, (x,g)
xgl(g —Q"), where the indices k and I label the adiabat-
ic states of the kink and lattice vibrational states, respec-
tively. An important point to notice is that, due to H;„t,
the lattice must suffer local distortion to conform better
to the presence of the pinned kink. One can find Q" 's,
the shifts in the equilibrium positions of the phonon coor-
dinates, pertaining to the ground state yp =0, by using the
prescriptions of standard polaron theory [13]. The result
is as follows:
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which in turn establishes the form of Eq. (7) [14]. From
now on we shall assume that the polaron eAect is strong,
i.e., that h, » 0. Physically, this condition means that the
polaron cloud is created by many vibrational quanta and
is capable of sustaining against a single-phonon fluctua-
tional disintegration.

After the strong polaron eflect is removed from H, the
residual weak interaction which mixes the adiabatic
kink-vibrational states is described by the nonadiabaticity
operator [6) I, acting on + such that

i +i, ) =(2M) 'g [2Pqy), (x, Q)Pqg), ((Q)
q

+g)i(Q)P y), (x,Q)].
%'hen sandwiched between the diff'erent adiabatic states
of H, I. triggers quantum transitions between the kink

states, accompanied by a simultaneous multiquantum ex-
citation and redeformation of the lattice. A single activa-
tion event contributing to the overall depinning rate may
therefore be viewed as a two-stage process involving (i) a
fluctuation-induced jump of the kink to an excited level

s), in (3), and (ii) a successive resonance transition of the
kink through the barrier region, via either underbarrier
tunnel paths (if e), & U), or overbarrier ones (if s), & U).
%e hope to discuss the role of tunnel paths in the depin-

Poh =(h/M)P hroq! Pq! '-(nq+ —,
' ), (9)

'=g-h~, M~q!Q,'!'(n, +-! ),

where Pq =Cq(e), —so) '(y), (x,0)!exp(iq„x)!yo(x, o))
is the kink transition-matrix element in the Condon ap-
proximation [5,16], nq are the Bose occupation numbers
for phonons, and o. measures the half-width of the Gauss-
ian function in (9). By employing Eq. (6), we obtain o
as a function of T:

ning process in a longer paper [15] at a later opportunity;
at present we focus on the case where the pinning barrier
is jumped over (the criterion for the realization of such a
regime will be given below). The jump rate is defined as
follows:

f
, [8v(s), )/r)s), ]de), , (8)

with the integrand being the (differential) rate at which
the kink fluctuationally leaves the pinned state using the
overbarrier continuum state yg, in which the kink defec-
ton is effectively decoupled [7,8] from phonons. In the
considered case of the strong coupling of the pinned kink
to the lattice distortion the integrand of Eq. (8) can be
written explicitly as [16]

rl v(s), )/Bsi, = (2)r/o'-') ' 'Poh exp[ —(s), —s~) '/2o''],

7 /Og(0, T,), 0«T,
o '(T) =2AOg-(O, To) x i [I +(T/0) ln(T/To)] To«T«0

l, T(& Tp,

(IOa)
(lob)
(IOc)

where g(O, To) =[I+In(8/To)] ', and the kink width

manifests itself in the characteristic temperature Tp
=hs/)v-(tu/M)8. Qualitatively our result (10) can be
divided into three regions in T. Above 0 the lattice is

sensibly classical (nq» I), and a- varies linearly with T
Below 0 phonons with energies h mq & T are frozen, and
o-' is governed both by classical and quantum (zero-
point) fluctuations of the lattice. When T is further
lowered through To, the last essential phonons with

q —w ' drop into their ground states, and the half-width
is controlled by quantum fluctuations.

To find Pq, let us observe that, due to the localized
character of the harmonic-oscillator wave function
the main contribution to the matrix element comes from
the region !x—x, . !—x. Using in this region a simple
&KB expression for yp, and normalizing it by standard
means [17], we get

!Pq! = (4)rape)', ) 'i'! Cq! 'expj —[(q, + i~)x]'-J,

where ()rx ) -' =s) /ep» l. With !Pq!
'-

in hand, the phonon

x exp( —
r), /ep), (12)

where, for T»0, F(T) =3T/28, whereas in the opposite
limit, T«0, F(T)—l.

To proceed further, we now need to determine the ex-

tent to which the approximation of the overall rate by Eq.
(8) is valid. Physical intuition would say that the over-

barrier jump is preferable for the kink whenever r is

small and/or T is high. Indeed, a detailed study [15] of

the contribution of the underbarrier tunnel paths to the

overall rate shows that the rate is dominated by overbar-

rier paths, when y & min jrI/r„„(a v~/Uo) '), where]/&)

a =o '(T)/co(Uo @-)« 1. —
Collecting Eqs. (9) and (12) into Eq. (8), and exploit-

ing the above condition in carrying out the integration
over ~I,-, we arrive at the final result:

! sum P„h can be calculated in just the same way as we ob-
tained Eq. (7). Thus, we have

P„h =(o)i&/6n'i ) [(Ga b) OTo/Ms si', ]F(T)(ei, /s-o) '-

v = voexp j —[(Uo —@)'-/2a '-(T)] [1 —(r/r *)]], r * = (Ui) —g))/2~,

vo = (2 ' /6n) o)0 [(Ga b) 'oOTo/M-s Uo]F(-T) -(Uo/cp) ' exp[ —(Uo —z.r )/cp] .

(13)
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We can now reach rigorous conclusions regarding the
temperature behavior of the depinning rate. Combined
with (10a), Eq. (13) suggests that in the classical temper-
ature limit above 0 the rate may be presented in an Ar-

—E*( )/Trhenius form: v = voe
' . The attempt frequency

exhibits a T dependence, while the activation barrier
height is given by

E*(r)=Up t *—r, Up =(Up —ap) /4h,
(14)

s
* =s (Up —ap)/2A.

It now becomes apparent that the polaron effect plays a
fundamental role in energetics of the kink depinning
phenomenon. In particular, it is seen from (14) that even

in the simplest case of zero applied stress the actual bar-
rier height Uo differs markedly from the bare height Uo.
This is because the multiquantum Gaussian fluctuations
have to destroy the polaron cloud by an appropriate lat-
tice deformation in their attempts to release the pinned
kink.

When the temperature is lowered, Eq. (IOb) states that
below 0 quantum lattice fluctuations do come into action.
As expected, now the thermal-fluctuation Arrhenius law

ceases to give a correct description of the breakaway ki-

netics, so that the concept of the effective (temperature
dependent) activation energy should be introduced [18).
This conclusion deserves careful attention in view of the
possibility of obtaining valuable information about pin-

ning effects from low-temperature internal friction data
[19]. Finally, let us observe that in the ultraquantum
temperature region below Tp (for 8-0.03 eV, and

G/rp —10, we estimate Tp-10 K), both vp and rs are
controlled solely by quantum fluctuations. We conclude
that in this region the depinning rate displays athermal
behavior.

Finally, using for an order-of-magnitude estimate of
the rate the above values, for Ga —3 eV, xp-a, cpD/

ro-0.4, r/rp-0. 5, and T-H, we obtain v ' —10 s.
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