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Nonlinear Amplification of Inverse-Bremsstrahlung Electron Acceleration
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The acceleration of electrons using a laser and a static electric field perpendicular to the former is con-
sidered. The coupled particle-field equations are reduced to a second-order nonlinear inhomogeneous

equation which determines the trajectory of the particle. The particle energy equation is considered and

found to exhibit fold catastrophes. At these catastrophes, which may occur whenever the wave phase is

nx if the direction of the applied weak field is reversed at (2n —l)z/2, further net acceleration occurs.
The trajectory equation is found amenable to analytical treatment.

PACS numbers: 41.75.Fr, 29. 17.+w

Laser acceleration of particles without plasma has been

proposed as a means of gaining energy without the
difficulty of plasma control [1-3]. In this method one
uses a strong laser field (typically the power is —10"
W/cm for a wavelength of 10 pm) to set the particles in

motion, and a weak perpendicular static electric or mag-
netic field (with a intensity of 10 ' that of the laser
field). The resulting slightly deformed electromagnetic
(EM) field allows for the acceleration of the particles.
Clearly the laser field alone only sets the kinetic energy of
the particle oscillation without any net gain [4].

In a recent paper, Kawata et al. [5] discussed in detail
the optimal conditions for electron acceleration with a
laser plus small perpendicular static electric field, E„.nv.

Through single-particle computation and particle simula-

tion, they found that the electron is accelerated in both
half wavelengths of the wave, and its relativistic factor y

increases by as much as a factor of 3.
In this Letter we analytically analyze the work of Ref.

[5] and show that the coupled electron-EM-field system

is governed by a set of equations containing one nonlinear

and several linear ones. The nonlinear equation can be

solved exactly and it governs the bulk of the physics; the

linear equations are then solved from the knowledge of
the solution to the nonlinear one. We predict, among

other things, that the increase of y can be made much

larger than given in Ref. [5] by applying, at optimally
determined positions, an array of E„.»'s with interchang-

ing signs.
The starting point of our analysis is the coupled

particle-field equations (see Fig. 1)

dP, = —eP, , E, ,
dt

v„and (2) by v, , and adding to obtain

dc
eE, , v, , s—(t) =me 2 y(t)+ eE,,vny (t), (3)

where y is the time varying relativistic factor which re-
lates P, and P, , to i,- and l, , through P,- =my[. ,- and

P, , =myi,
From (I), (2), and (3) one can obtain the solutions

P„r =mr y+eE„.»y+K],
P, , v = —(e/k )E, ,cosy —eE„n„et+K2, .

(4)

(5)

g —= —(k/2v ) (eE„nny '+ 2K )y ). ,

such that P, . =dg/dp. Using the fact that j =k (v

ed
IS

where K] and K2 are constants determined from the ini-

tial conditions. We now show that the dynamical equa-
tions (1), (2), and (3) can be reduced to a one-dimen-

sional problem through a change of the independent vari-

able from the time to the phase p. This is accomplished

by introducing the new coordinate Q,

6'P, , = —e(1 —P„)E,, —eE„nv, (2)

where E„.„„ is the applied field intensity, p, =v,-/v, p, ,

=v, /v, and 8- ,=E, = —E,.,si ~wnith p=k(vt —x). P,
and P, are the x and y components of the linear momen-
tum of the particle. The energy equation can be easily
derived from Eqs. (1) and (2) by multiplying Eq. (1) by

FIG. 1. The coupled electron-laser-static-field configura-
tion.
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—v „)= —(k/mc y ) (eE„ppy. +K
~ ) and from (4),

m c+P,, c
mc y=—

2 (K~ —2ceE ,ppQ. /k) '~

r i/z
2ceE gppQ+—K)—

2 k
(7)

ceE„ 1

, &z
Q' s in' .

k (K ~

—2ceE„„pQ/k ) ' (9)

Equations (8) and (9) are the inverse-bremsstrahlung
electron acceleration (IBEA) equations. Equation (8) is

a second-order nonlinear inhomogeneous one that deter-
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Taking the derivative with respect to the phase p of Eqs.
(4) and using (5) and (7) we finally obtain

eE„.pp2k K~ —(2c/k)eE.„ppQ

eEapp e+ E,,sing
2kc kc

and

mines the trajectory of the particle since x and y are ex-
plicitly given in terms of Q as

1 1x=—kc
k eE

happ

—Q' — E, ,cosy+ Kq —p, (l 0)
kc

1 i/2
2ceE„.ppQKi-

eE pp

+K[

The acceleration equation, Eq. (9), is easily solved once a
first integration of (8) is done. The important feature to
be emphasized here is that s' is proportional to Q'sintp.

Before discussing the solution of Eq. (8), we analyze
the expected behavior of the energy as a function of tp (or
t) Cle. arly whenever p nrr, s' is zero (s is maximum or
minimum). If, say, at tp=z, Q'=P, , is also zero, then s is
at an inflection point, s"=0. This behavior is commonly
referred to as a fold catastrophe, according to the
classification of Thorn [6]. This catastrophe also charac-
terizes the phenomenon of a rainbow. This behavior is
shown in Fig. 2, where a case similar to that of Ref. [5) is
considered, namely, the amplitude of the EM wave
is E, ,=O. IEo, where Eo mc /(eA/32) = I.636& lO /A,

(V/cm), )t, is the wavelength in cm, and E„pp/E„.
=4.28X IO '. The laser power is 3.5&10' W/cm for

%, =10 pm. The initial electron velocity is i 0=0.9999c.
The electrons are injected at an angle of 0.608 with
respect to the laser direction (along x). The figure exhib-
its s(y) and Q(tp). The inflection point alluded to above
is clearly shown (indicated by the arrow). At later times
e reaches a maximum at +=2m and then just oscillates
along with the wave. If the applied field is reversed at
3z/2, the original maximum in s at p=2z becomes an
inflection point and the particle energy is then pushed up
to another maximum at 3x after which the oscillation sets
in again. The net gain in energy after the first kick is
about 300%,whereas after the second kick it is 600%.
Thus one can double the gain by reversing the direction
of the applied electric field at the appropriate time (or x).
In Fig. 3 we show s(t) vs t which exhibits the staircase
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FIG. 2. (a) The energy e in units of the electron rest mass
mc

-'
vs the laser phase. The lower curve is the result of Ref.

[5], whereas the upper one is our result (see text for details).
(b) The trajectory variable in units of mc vs the laser phase.
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FIG. 3. The energy s in units of mc'- vs the time in units of
I.OI x lO" X/32c (see text and Ref. [5] for details).
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structure of the acceleration quite clearly.
The mechanism responsible for this doubling of the

gain in the particle energy is governed by nonlinear equa-
tions. We therefore call it the nonlinear arnplification of
in verse-bremsstrahlung electron acceleration (NAI BEA).
Clearly the NAIBEA can be repeated several times by
merely alternating the sign of the applied field at the ap-
propriate phase of the wave. A simple estimate of the net

gain in energy after the elapse of nx in p, with accom-
panying changes in the sign of E„.„„,is -n(hs), where hs
is the gain after the first kick (in our case hs is about 150
MeV). The way to accomplish this is by arranging an ar-
ray of E„.pp's with interchanging signs at appropriate posi-
tions along the x direction. These locations are obtained
from Eq. (10). The position x~ at which the first

inflection point in a occurs is

eP, , (0)
xl = A. + ——=0.11 m.

8'Egpp eE happ 2
(i 2)

If the applied field is reversed at p=3z/2, which corre-
sponds to the position x ~,

1 kc
x~ =

k eE happ

=0.243 m,

—Q3,/2+P, , (0)+ E&,,kc

(i 3)

then the position of the second kick or inflection point is

x2 =x
~
+ =x

~
+0.365 m =0 474 m . (14)

2 IQ3./2 le

eE;tpp 2

It is easy to show that the position of the nth reversing of
the static field is given by

25o
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FlG. 4. The trajectory of the electron. Axes p and 3t. are
given in units of )/32, where A. is the wavelength of the laser
wave (see text for details).

The values of Q' can be calculated from the trajectory
equation, Eq. (8), to which we turn our attention below.
Before doing this we mention that the trajectory of the
electrons accelerated with the NAIBEA mechanism is
well behaved. Figure 4 shows a typical case. The disper-
sion (oscillation) along the y direction is quite small.

Numerical integration of Eq. (8) is quite simple. How-
ever, to gain more insight into what to expect we develop
in what follows a procedure through which an analytical
solution can be obtained albeit in an approximate way.
To proceed we write the solution of q

=—Q/mc, as

I('2" "+lQ(2. +i)./21xg—
eE

happ

2n+ 1

2k

where K2" ' is given by

It (» —~) =g(» -')+2Q'—
and the corresponding following kick by

2Q(2»+ ( )»/2 iE
xn+ I =xn+

E
happ

(i 5)

(i 7)

q =qo+ Bq ~+ 8'q2+ .

where B is the laser parameter,

8 =eE,Jkmc '- =0.5093 .

In Eq. (18) qp satisfies the nonlinear equation

1+qo-'qo=—
4 qo-ko '

whereas q~ and q2 are both given by linear equations

(i8)

(i9)

(20)

qo, 1+qo'
q) + q}+ , q~

= ——86+Bsinp,
2(ko —qo) 4(k() —q())

'-

qp, 1+qp 1 qI qpqiqI 1+qp )q(
2(ko —qo) 4(ko qo) 4 qp

—ko 2(qp —kp)' 4(qp —kp)'

~here

(2i)

(22)

kK) E„.pp (23)
2rnc 'eE,,pp E).,

Equation (20) can be easily solved analytically, and from the solution, qp, Eqs. (21) and (22) can be integrated. The
details of the full solution will be presented elsewhere [7]. In Fig. 5 we present a comparison between the analytical

method, based on Eq. (18) (dashed line), and the numerically generated one. We have here an agreement to better than
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I increasing the gain in electron energy through the mecha-
nism we coined NAIBEA. Our accelerator involves ap-
plying an array of E pp s with interchanging signs at op-
timally determined positions. Further optimization can
be obtained by adjusting (through magnets) the new "en-
trance" angle after every kick.
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FIG. 5. Solid curve: Numerically generated solution of Eqs.
(8) and (9) in the one-kick case of Ref. [5]. Dashed curve:
The result obtained from the analytical method, Eqs. (18),
(20), (21), and (22) (see text for details).

7% at the maxima and minima and better than 2% on the
average. Therefore, for all practical purposes, the set of
Eqs. (18), (20), (2l), and (22) is an excellent substitute
for the numerically generated solution.

In conclusion, we have further analyzed the IBEA
model of Kawata et al. [5], and found it to be amenable
to analytical treatment. We also discovered a new way of
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