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We carry out a topological analysis on an experimental data set from the laser with saturable ab-
sorber. This analysis is based on the topological organization of low period orbits extracted from chaotic
time series data. This allows us to determine for the first time that previously proposed models are com-
patible with the data.

PACS numbers: 42.50.Lc, 05.45.+b, 42.55.—f

It has recently become possible to provide a topological
classification of strange attractors. In this classification
scheme the topological structure of a strange attractor is

given by a set of integers. These integers describe the
structure of the "knot-holder" [I] or "template" which

supports the strange attractor [2]. The template de-

scribes the stretching and compressing mechanisms re-

sponsible for creating the strange attractor. These
stretching and compressing mechanisms are also responsi-
ble for organizing the unstable periodic orbits which are
embedded in the strange attractor in a unique way.

This topological classification is in contrast to the
classification of strange attractors according to their
metric properties (e.g. , Lyapunov exponents, various di-

mensions). Metric properties are invariant under a coor-
dinate transformation but not under control parameter
variation. Topological properties remain invariant under
both coordinate transformations and control parameter
variations, or change in experimental conditions. This
means, in particular, that chaotic data sets taken for a
physical system under diAerent experimental conditions
will exhibit the same topological classification.

Furthermore, it is possible to determine the topological
classification of a strange attractor by carrying out an

analysis ("topological analysis" ) on scalar time series
data [3]. This provides, for the first time, a test to deter-
mine whether a model which is proposed to describe a
chaotic process is in fact compatible with that process.
Topological analyses are carried out on the experimental
time series data and data generated by the model. If the
topological analyses identify different templates (sets of
integers), the model can be rejected as not compatible
with the data. Otherwise, the model is compatible with

the data.
In this Letter we apply this topological analysis, for the

first time, to determine whether models proposed to de-
scribed the laser with saturable absorber (LSA) [4-7]
are compatible with a number of experimental data sets
which have been taken from the LSA [6-9].

The experimental setup consists of an infrared cavity
containing a discharge COq amplifier and an absorber
cell. We have used CH3I:He and Os04. He in the ratio
1:20 as absorbers. The laser output intensity I is digitized
and discretely sampled at a rate of about 80 samples per

period for fixed values of the control parameters. These
include the discharge current, the absorber pressure, and

the laser frequency detuning. A number of long time
series, up to 32x10 8-bit data, were stored in a micro-
computer by use of a digital oscilloscope.

In the region of the LSA where instabilities and chaos
are found, the laser intensity pulse starts below threshold,
developing a large peak I followed by a variable number
of' small peaks S. Each minimum is followed by a max-
imum; the deeper the minimum, the more intense the fol-

lowing maximum. A segment of a typical data set is

shown in Fig. 1.
Three [4,6], four [5], and five [7] variable models have

been proposed to describe the LSA. The mechanism re-

sponsible for the existence of chaotic behavior in these
models is the following. An unstable limit cycle (saddle
cycle) or its degenerate limit, an unstable focus, has

stable and unstable invariant manifolds which approach
tangency [10] [cf. Fig. 2(a)]. In the three-, four-, and

five-dimensional models the unstable manifold of the sad-

dle cycle is two dimensional, while the stable manifold is

2D, 3D, and 4D, respectively. As the tangency is ap-

proached, a number of stable periodic orbits are created

by saddle-node bifurcations, which then undergo period-

doubling cascades. This generates a complicated dynam-

ics even before the tangency occurs [10,11]. When the
manifolds behave as shown in Fig. 2(b) the flow is hyper-

bolic and exhibits a Smale horseshoe [10] with zero glo-

bal torsion. A point in the strange attractor near the un-

stable invariant manifold 8'" will evolve during one

period along W" (stretching) while at the same time be-

ing compressed along the direction of the stable manifold
II" towards the invariant set II'" (folding). The stretch-

ing and folding mechanisms, responsible for the creation
of chaos, are represented schematically by the template
for this flow, shown in Fig. 2(c).

To determine whether these models are compatible
with the experimental data, we must identify the tem-

plate underlying the experimental strange attractor, and

compare it with the template shown in Fig. 2(c). The to-

pological analysis of the chaotic data was carried out in a

number of simple steps.
First, the unstable periodic orbits embedded in the

strange attractor were determined by the method of close
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FIG. l. A segment of the time series data. The intensity is

plotted vs time. In this case a close return after 7 periods
occurs (indicated by the arrows), as the strange attractor is

closely following a period-7 orbit, staying close to it during ap-

proximately 14 periods.

(c)

returns [3]. If the phase-space trajectory of the system
enters the neighborhood of an unstable periodic orbit with

a relatively small Lyapunov exponent, it may remain in

the neighborhood of that orbit sufficiently long so that it
returns near its starting point and evolves near an earlier
point of its trajectory (cf. Fig. I). Such close return seg-
ments are easily identified by plotting !1(i)—1(i+p)!,
where i indexes the discretely sampled intensity (I i
~ 32&10 ). Segments i;„(i(i „„where. the dif-
ference above is relatively small indicate segments of
chaotic time series data that can then be used as repre-
sentations of unstable periodic orbits of period p, mea-
sured in units of the sample rate. In this way, four or
more periodic orbits were located in each data file taken
under different experimental conditions for the LSA.

Second, an embedding of these segments as well as the
entire strange attractor in R must be constructed so that
topological organization of orbit pairs can be determined.
We have adopted a differential phase-space embedding

l(i )—[y ) (i),yp(i), y3(i)],

where y~(i) =pi-~ l(j)e ' ~ i, yq(i) =l(i), y3(i)
=l(i) —1(i —I). Here N is taken as about two cycle
times (N-2x80) [3]. This embedding of the period-1
and -3 orbits is shown in Fig. 3.

The embedded strange attractor had a hole in the
center, making possible the construction of a Poincare
section. In each section we were able to construct a re-
turn map. For each map we found an orientation-
preserving and an orientation-reversing branch. This al-
lowed the development of a symbolic dynamics for all or-
bits in each data set: x (y) for passage through the
orientation-preserving (-reversing) branch. A segment of
data which closely follows the unstable period-1 orbit (y)
is sho~n in Fig. 4. This clearly identifies the orbit y as a

FIG. 2. (a) A saddle cycle whose unstable and stable mani-

folds are approaching a tangency. (b) The stable and unstable

manifolds of a saddle cycle after the last tangency. There is a

hyperbolic invariant set coexisting with the saddle cycle. (c)
The horseshoe template. For each periodic orbit held by this

manifold, there is an orbit in the invariant set of (b) with iden-

tical topological properties.

flip saddle, as the orbit segment yy forms the boundary of
a nonorientable strip. This allows the identification x
with the small peaks, x-S, and y with the large peaks,
y-L. The unstable limit cycle y describes unstable
periodic behavior of the LSA consisting of a series of
large peaks.

Third, the linking numbers of all pairs of periodic or-
bits identified in each data set were determined [3,12].
The linking number of two orbits is defined by a Gauss
integral [3] and is roughly the number of times the two

orbits wind around each other. Computation of the link-

ing number in the differential phase-space embedding is

particularly easy and was done by counting crossings of
the orbits. This is shown in Fig. 3, where the over and
under crossings of the period-1 and period-3 orbits are
clearly indicated.

Fourth, a template was identified on the basis of the
linking numbers of a small set of orbits. Each temp1ate
has a unique signature in terms of the linking numbers of
pairs of periodic orbits. In fact, the linking numbers of
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FIG. 3. A two dimensional projection of the three-
dimensional embedding for the segment close to the period-1
orbit and for a segment close to a period-3 orbit. The over and
under crossings keep track of the third dimension. The seg-
ments of orbits in the outer part of the figure have higher values
of the third coordinate than the segments of orbits in the inner

part. Two orbit segments which cross each other are inter-

changing their order on the third coordinate and, for this
reason, are on the orientation reversing branch. The period-1
and period-3 orbits cross each other 4 times, so their linking
number is —,

' (4) =2.

only the period-1 and period-2 orbits suffice to distinguish
different templates. When not all of these orbits can be
extracted from the data, alternative subsets of orbits can
be used to identify the template. Additional orbits then
provide confirmation of the template identification [3].

For each of the experimental LSA data files studied, a
minimum of four periodic orbits was reconstructed.
These orbits had symbolic names, y, yx", yx" 'y, with n

ranging from 1 to 15. Orbits of higher period, which are
compositions of different pulses with n =1,2 have also
been extracted from some files. For each of the files stud-
ied, the template identified was the horseshoe template
with zero global torsion. In every case, the template was

overdetermined by the periodic orbits extracted.
We point out here that we cannot entirely reconstruct

the phase space, since the intensity of the LSA goes
below our detection limit between most successive pulses.
Thus, in principle we cannot exclude the possibility that
part of the large peaks which are not completely recon-
structed lie on a third branch of a template. However, all

the orbits extracted from our data set are compatible with

a template having only two branches, which is the sim-

plest template compatible with the data.
This analysis reveals that as the control parameters in

the experiments are changed, the template supporting the
strange attractor remains unchanged. What does change
is the set of unstable periodic orbits which are present in

the strange attractor and/or their degree of instability.
These changes have consequences which can be easily

(arb. units)

FIG. 4. Two cycles around the period-1 Hip saddle orbit. As
in Fig. 3, the segments of orbits in the outer part of the figure
have higher values of the third coordinate than the segments in

the inner part. The strip whose boundary is approximated by
these orbits is nonorientable as it is a rectangle with two sides
joined with a half twist.

visualized. This can be done by plotting the cumulative
number of times the phase-space trajectory passes
through the orientation-preserving (or -reversing) branch
of the template (po or p~) as a function of the cumulative
number of passes through the template (po+ p ~

). For
each of the files studied, this plot was nearly a straight
line, with slope P/Q. For each of the files, the higher
period orbits extracted had a "rotation number" p i/
(po+p~), well approximated by the ratio P/Q In Fig. 5.
we show such a plot for three LSA data files taken at
different control parameter values.

One of the benefits of a topological analysis is that the
recovery of a "badly ordered" or non-well-ordered orbit
from the data set is a sufficient condition to show that the
topological entropy of the flow is positive, and that the
temporal behavior is chaotic [13]. This requires much
less work than an analysis based on the computation of
Lyapunov exponents, which can be problematic for rela-
tively small data sets. We have found different badly or-
dered orbits in LSA data files. One of these orbits of
period 7 (yxyyxyx) is shown in Fig. I.

In conclusion, for the first time a topological analysis of
chaotic time series data was used to determine if models
proposed to describe the dynamics of a physical system
are in fact compatible with the dynamics responsible for
generating the data. The large number of experimental
data sets which were recorded and analyzed for the LSA
indicate that the dynamics is governed by a flow organ-
ized by a Smale horseshoe with zero global torsion. Vari-
ation of the control parameters restricts the flow to
different parts of the underlying template, which remains
unchanged as the control parameters are varied. Previ-

ously proposed models of dimensions three, four, and five
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FIG. 5. Cumulative number of passes P through the orienta-
tion reversing branch vs the cumulative number of passes g
through the template for three different control parameter
values. (Curve a) Absorber CHql:He with amplifier current
discharge of 10.9 mA and pressure O. l mbar; (curves b and c)
absorber Os04. He with amplifier current discharge of 9.3 mA
and pressure 0.73 and 0.47 mbar, respectively.

exhibit the same underlying template, and are therefore
not inconsistent with the experimental data sets.
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