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Folded Stern-Gerlach Experiment as a Means for Detecting Nuclear Magnetic Resonance
in Individual Nuclei
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In a Stern-Gerlach experiment, the spatial trajectory of a particle traversing a magnetic-field gradient
serves as a detector of its spin state. This paper considers the implications of adding a harmonic restor-
ing potential to the Stern-Gerlach experiment. The behavior of such systems is shown to resemble that
of a "folded" Stern-Gerlach experiment, in that the linear spatial trajectory of the Stern-Gerlach experi-
ment becomes folded into the cyclic phase-space trajectory of the oscillator. Under appropriate cir-
cumstances, the coupling between the spin and the oscillator is shown to be su%ciently strong that it
might find practical application as the basis of a magnetic resonance imaging device.

PACS numbers: 33.25.—j, 35.80.+s, 61.16.Hn

Consider a system made up of three elements: (1) a
harmonic oscillator, (2) a spin- 2 particle (nominally a
proton) mounted on the oscillator, and (3) an externally
applied magnetic field. The magnetic moment of the par-
ticle will create a coupling between the field and the oscil-
lator. How strong is the coupling? What is the dynamic
behavior of the coupled system? This paper shows that,
under the proper conditions, the coupling is sufficiently
strong that magnetic resonance imaging of a single nu-
cleus may be feasible, by monitoring the excitation of an
oscillator coupled to the nucleus.

Let co be the resonant frequency of the mechanical os-
cillator, and m the oscillator mass. We adopt units
It to rrt =1. The external magnetic field B(x,t) is as-
sumed to have a uniform component, a time-dependent
component, and a gradient component;

B(x,t) =B„+B,cos(t)+G x,
with B„B„andG constant. The Harniltonian of the
coupled spin-oscillator system is

H = —,
'

(p +q ) —yB„I —yB, Icos(t) —yqn G. I. (2)

Here p and q are oscillator momentum and position
operators, satisfying [q,p]=i The unit v.ector n is the
axis of oscillator motion. The spin operators I = [I„IJ,I,]
satisfy [I,I~] iI, With this con.vention I, has eigenval-
ues +

& . The gyromagnetic ratio y gives the spin pre-
cession frequency at a given field strength.

This Hamiltonian is identical to that of Stern-Ger-
lach-Rabi experiments, except for the added harmonic
potential & q . From inspection of the Hamiltonian, it is

evident that the spin undergoes Rabi-type precession in

response to a time-dependent field which has two corn-

ponents, namely, the externally applied field B,cos(t),
and the oscillator-generated field qn-G. As usual in

analyzing Rabi precession [1],we move to an interaction
picture with the zero-order Hamiltonian Ho= —, (p 2

+q ) —z I. Here z is a unit vector in the direction of
the local field B,. The interaction-picture Hamiltonian is

of the form

Hin[ yBt:r &rot s (3)

with B,g an effective field as seen in a reference frame ro-

tating about z with unit angular velocity. The rotating-
frame spin I„tis defined by

I —= [z 181z+ cos (t ) (I —z Sz ) + sin (t )z*]I„,. (4)

Here z* is the antisymmetric matrix (z*),i =~;s;,&.

Henceforth we work exclusively in the rotating frame,
and drop the subscript from I„t.

lt is convenient to parametrize B,n in Eq. (3) in the

following standard way:

I—L, „V—
Ly „

B,z= — x+ y+Bz
y 2L 2L

Here X and Y are oscillator amplitude operators

(5)

X cos(t) —sin(t) q
Y sin(t) cos(t) p

y=z~x.

The lengths L and L, parametrize the drive field 8, :

L,/L = —yBI. x,

L, /L = yB( y.

(9)

(1O)

The physical interpretation of L and L~, is as follows.
We ask, for what excitation of the oscillator does the
oscillator-generated field cancel the transverse component
of the applied field B, 'i By Eq. (5), this occurs at X=L„
Y=L

satisfying [X,Y] =i Classically. , X and Y are the in-

phase and quadrature components of the oscillator ampli-
tude. The length scale L and the unit vectors x and y are
defined in terms of the field gradient:

x/I. =y(l —iz) G n,
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The dimensionless tuning parameter b in Eq. (5) is

b =r(B, I

—1,

The eigenstates (n, ~ ), of H;„i occur in pairs with
opposite-sign eigenvalues A,„—,labeled by an integer quan-
tum number n, such that

so that 6' vanishes when the spin precession frequency
y(B„(matches the oscillator frequency to =1.

We begin by treating the oscillator and spin motion
purely classically, i.e., regarding X, Y, and I in Eqs.
(3)-(5) as classical fields.

The equation of motion for (I) is

and

H;„i(n,~ &, -li,„—(n, ~ &, ,

d(I) = —yB,a x(I) .
dt

(12)

This is the expected result; B,a generates Rabi precession
of the spins. The spin vector I can be separated into com-
ponents I~,, and I~„~,parallel to and perpendicular to
Bdr. The adiabatic theorem [2] implies that if the system
starts in a state with (Iz.„)=m, B,a; then (I~.,„)=m, B,s at
all later times as well, so that m, is an (approximate)
constant of the motion.

In the classical equation of motion for X and Y, terms
proportional to (I~,o) oscillate with the Rabi frequency
y(B,a(, and can be neglected in a secular approximation.
Thus (I) = (I~.„)=m, B,s and we obtain

I~

X 0 toorbit'(X, Y) X Lx

d~ O Y—L,

The mixing amplitude a w and eigenvalues k„—are

a~ =L(2X, +b)/Jn/2,

) - =+ -'(b'+n/2L') '"
(18)

(n, ) = —,
' [(X—L.)'+(Y—L,,)']. (2o)

Expanding the n dependence of A,„—to first order yields

The shifted basis does not contain l

—1, J)„sothe (0, +&,
eigenstate is not defined. The basis set [(n, +'),} is com-
plete even without (0, +),.

Now suppose a wave packet is constructed as a super-
position of states (n, ~)„with mean quasienergy quan-
tum number (n, ). A wave packet localized at [X,Y} has
energy quantum numbers centered about

where the orbital frequency co,„b;tis dn n (n &

=+—orbit ~ (2i)

to„b;t(X,Y) =m,, [4b 'L '+ (X L„)'—1

+(Y—L )'] ' ' (14)

This equation can be solved by inspection, once we notice
that to„b;iis a constant of the motion. The (undamped)
oscillator trajectory in phase space is a circular orbit
about the point [L„,L~} with uniform angular velocity
orbit ~

We can check these classical results by solving the
quantum equations exactly. It is convenient to introduce
three different basis sets. The initial state is conveniently
specified in the familiar "harmonic" basis [(n, f &h, ln, ))t„
n =0, 1,2, . . .}, which is generated by the usual raising
and lowering operators. The time evolution is computed
by transforming to a shifted basis (defined below) [(n, f)„
(n, J)„n=0, 1,2, . . . }, and then further transforming to
an eigenstate basis (also defined below)

Because n is an integer, quantum wave packets therefore
have (to leading order) a periodic time dependence co„b;i,
as was also obtained classically.

To display the time evolution of a wave packet, it is
necessary to take into account that X and Y are noncom-
muting operators. We introduce a basis set of coherent
oscillator states (x,y) defined by

at, lx,y&=—(x+iy)(x, y&/~&. (22)

Here x and y are ordinary numbers which label the state,
not operators. Defined in this way, the coherent states
(x,y) are not orthogonal. However, they satisfy a
pseudo-orthogonality relation [1]

dylx, y&&x,yly&, (23)

where (p) is an arbitrary state. The wave function
itt(x, y, t) defined by

[(n, )+„(n,—), ; n =0, 1,2, . . . } . i'(x,y, t) =&x,y l i'(t)&— (24)

(a,+I++a, I ) +bI,
2L 2

(is)

The shifted basis is defined in terms of the shifted am-
plitude operators X,=X—L and Y, =Y—L~, and the
shifted raising and lowering operators a,——= (X, TiY, )/
J2. Then [a, ,a,+] =

1 (as usual). The Hamiltonian
takes a simple form in the shifted basis

therefore is a complete description of the oscillator state,
because knowledge of i'(x,y, t) allows us to expand
(y(t)) in any other basis.

Physically, y(x,y, t) gives the amplitude for the oscil-
lator to be found in a localized state (x,y) with &X& =x
and (Y) =y.

Figure 1 shows the evolution of a quantum wave packet
initialized with the oscillator in its ground state (i.e.,
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time = 0

Stern-Gerlach Splitting of the Wave Packet

1/8 orbit 1/4 orbit

0=
gpss,

FIG. l. Stern-Gerlach splitting of the wave packet.

maximally localized at (X) =0 and (Y) =0). The plotted
quantity in Fig. 1 is I y(x, y, t) I, summed over spin quan-
turn numbers. The drive field B, is such that L =0 and

L,, =10 (in units of length Jh/mro).
To demonstrate Stern-Gerlach separation of the wave

packet, the initial spin state in Fig. 1 is deliberately
chosen to be oblique to B,s= —y. Specifically, (I) is
chosen so that

(I) = —-' ( —'x+ 48/9y) . (2S)

Thus the initial packet contains both negative-frequency
eigenstates In, —), and positive-frequency eigenstates

I n, + )„,in —', to —,
' proportion.

Under time evolution, an inhomogeneous packet of this

type does not remain localized. Instead, it divides into
separate positive-frequency and negative-frequency wave

packets, which follow separate trajectories in L- Y phase
space.

This has the important practical consequence that the
oscillator becomes mechanically excited regardless of the
initial spin state. It is unnecessary to specially prepare
the spin state (e.g. , with a "n/2" pulse as in magnetic res-
onance imaging).

An analogous packet separation occurs in a Stern-
Gerlach-Rabi apparatus. In the Stern-Gerlach experi-
ment, an arbitrary initial wave packet can be decomposed
into up-spin and down-spin packets, whose trajectories
subsequently separate in q-p phase space. Similarly, in

I

the present case an arbitrary initial packet can be decom-

r

d
dt Y

0 —co„bt L —L„
orbit 0 Y—

Ly

—1/2Q
+ 0

0 L
—1/2Q Y (26)

Here Q is the quality factor of the oscillator.
The equilibrium solutions of the damped equations rep-

resent states with continuous power flow (n)/Q into the
oscillator. It can be shown that a sufficient condition for
a unique, stable equilibrium to exist is that BI satisfy

&n)/Q ~ -' yI(l —zz) B I. (27)

Classically, this is equivalent to the requirement that B,
couple enough power into the oscillator to balance dissi-

pative losses.
The occupation number (n) of the oscillator at equilib-

rium (in the harmonic basis) is found to be

posed into an In, +), packet and a In, —), packet. These
two packets are down-spin and up-spin relative to the
rotating-frame field B,p. Packet separation subsequently
occurs in L-Y phase space, as shown in Fig. l.

It follows that, in the classical equations of motion
[Eqs. (13) and (14)], m, can have only the discrete
values + 2. Other values of m, are classically possible,
but are not supported by the underlying quantum
mechanics, just as in the Stern-Gerlach experiment.

Oscillator damping can be modeled by adding an Ohm-
ic damping term to the X-Y equations of motion:

( ) = ' [4P2Z'-+Z2 +L2+L2 —[(L2 +Z&+Z2+4P2Z2)& —4L2 (L2+L2)] ~~2} (28)

L +L LID)t (29)

In physical terms, the field externally applied to the parti-
cle should be larger than the maximum possible
oscillator-generated field.

Thermal fluctuations in the oscillator can induce tran-

Here L .„,=Q/2L is the upper bound on the oscillator
amplitude which can be driven by a single spin. In terms
of L „„,the external pow. er requirement on B, [Eq. (27)]
is equivalent to

sitions between positive-frequency and negative-frequen-

cy states. To calculate the rate Rz;„atwhich a positive-
frequency packet decays into a negative-frequency pack-
et, the thermal environment is modeled by a Langevin
force term in the Hamiltonian. The coupled spin-
oscillator system is assumed to be in equilibrium with

6=0, as per Eq. (28). Using the fluctuation-dissipation
theorem to determine the spectral density of oscillator
fluctuations as a function of temperature T, and applying
first-order time-dependent perturbation theory, leads to

ll26



VOLUME 68, NUMBER 8 PH YSICAL REVIEW LETTERS 24 FEBRUARY 1992

the following expression for Rq;~.

1 L 2
max kT

g L2+L,2 L—'„,8.(.n)
(30)

Here k is Boltzmann's constant. So if the excitation of
the oscillator is above thermal noise, and B, is sufficiently
strong that L„+L,, »L~„.„,then the probability of a
thermally induced spin slip occurring during an oscillator
damping time I/Q is small.

Oscillator-based NMR detection differs substantially
from inductive NMR detection, and it is necessary to
"unlearn" some conventional wisdom regarding inductive
NMR. In oscillator-based detection it is not necessary to
polarize samples prior to taking a measurement, nor is it
necessary to wait for a period —T~ after each measure-
ment for the polarization to equilibriate. z/2 pulses are
not required to initiate spin precession, because any ini-
tial spin state couples energy into the oscillator.

The novel characteristics of oscillator-based NMR
detection arise from the appearance of field gradients in a
new and unfamiliar role, as a source of mechanical force,
rather than as a means of modulating spin phases.

Another paper [3] describes some specific designs for
oscillator-based detectors. The predicted single-nucleon
signals lie well above quantum and thermodynamic detec-
tion limits. The intrinsic spatial resolution is of order
(L, +L~ ) 'I, which for a suitable design can be less than
an angstrom.

Bloom and co-workers have also described a resonant
Stern-Gerlach experiment [4,5]. Their approach is simi-
lar to that described here, in that they observed Stern-
Gerlach separation of the wave packet occurring in a ro-

tating frame of reference associated with a time-de-
pendent applied field. Their experiment diA'ered in that
the gradient was time dependent, rather than static as in

the present case, and the trajectory of the particles was
spatially extended, rather than folded as in the present
case.

There is considerable scope for invention in oscillator-
based NMR detection. Alternative and better instrument
designs might well differ radically from those presented
in [3]. Readers are encouraged to exercise their talents in

this area.
There is an urgent medical need for the information

that a molecular imaging device could provide. Amino
acid sequences are known for thousands of biologically
important molecules, but we do not know the structure of
these molecules or how they work, except for a few excep-
tional cases. This makes the rational design of treat-
ments (e.g., for the HIV disease) very slow and difficult.
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