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Ab initio Description of Counterion Screening in Colloidal Suspensions
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A classical version of the Car-Parinello method is proposed, combining density-functional theory for
the counterions and molecular dynamics for the macroions, to simulate charged colloidal suspensions.

The classic Derjaguin-Landau-Verwey-Overbeek (linear screening) theory is shown to fail for large ma-

croion packing fractions.

PACS numbers: 82.70.Dd, 61.20.Gy

Charge-stabilized colloidal suspensions are very asym-
metric ionic systems made up of highly charged ma-
croions of radius R = 10-103 nm, and oppositely charged
microscopic counterions, dissolved in water or some other
polar solvent. The macroion charge Ze is due to surface
dissociation and amounts typically to a few hundred ele-
mentary charges. The ionicity of the suspension may be
enhanced by adding salt, thus allowing the electrostatic
(Debye) screening length A, n to be tuned. In the "primi-
tive model" picture of electrolytes, the molecular solvent

is replaced by a continuum of dielectric constant t. . The
microscopic co-ions and counterions form electric double
layers near the macroion surfaces, of width comparable to
A,z, these double layers provide a short-range repulsion
between macroions, ensuring the stability of the suspen-
sion.

I n the traditional statistical description of charge-

stabilized suspensions, the adiabatic approximation is in-

voked to eliminate the co-ion and counterion degrees of
freedom and construct a screened, effective pair potential

between macroions. If the interaction between the elec-

tric double layers associated with two neighboring ma-

croions is treated within linearized Poisson-Boltzmann

theory, a simple Debye-like effective pair potential

-exp( —r/ko)/er results, which is the electrostatic part

of the classic Derjaguin-Landau-Verwey-Overbeek
(DLVO) potential [1]. The DLVO approach has been

frequently questioned, both on theoretical [2] and experi-

mental [3] grounds. Besides the restrictions to linear

screening, the theory neglects, by construction, double-

layer Auctuations and simultaneous interactions of more

than two double layers, which, contrary to the bare
Coulomb interactions, are not pairwise additive, and

would result in eff'ective triplet and higher-order forces
between macroions. In fact, the DLUO potential has fre-

quently been used with an adjustable macroion charge to
interpret experimental data for the static structure factor
S(k).

The deficiencies of DLVO theory can, in principle, be
circumvented by an ab initio statistical approach, where
macroions and counterions are treated on an equal foot-
ing within a model incorporating, besides the usual
excluded-volume constraints, only bare Coulomb interac-
tions. Such a model may then be examined via Monte
Carlo or molecular dynamics (MD) computer simulations
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where A, . is the de Broglie thermal wavelength of the
counterions, which are assumed to be monovalent, and
v„„(r) denotes the macr.oion-counterion pair potential,
which is Coulombic ( —Ze-/er) for r ) R. V,.„„accounts
for the counterion correlations; since the counterions
Coulomb repel each other, it is a reasonable approxima-
tion to neglect their size, so that they form an inhomo-
geneous one-component plasma (OCP) of point charges.
For P,-„„we finally adopt the local-density approximation
[g]:

&corr = drfocp(T p (2d)

where fP&p denotes the excess free energy per unit
volume of the homogeneous OCP at temperature T and

[4], or within the framework of nonlinear integral equa-
tions for the pair structure [5], but such first-principles
calculations become rapidly untractable for large size and

charge asymmetries, typical of colloidal suspensions.
In this Letter we propose an alternative ab initio ap-

proach, combining density-functional theory (DFT) and
MD simulations, directly inspired by the Car-Parinello
method for ion-electron systems [6,7]. The subsequent
discussion will be restricted to salt-free suspensions, con-
taining only spherical macroions, of radius R, and coun-
terions. While the degrees of freedom of the former will

be treated explicitly, the counterion component will be
described, for each macroion configuration and within the
adiabatic approximation, by the instantaneous inhomo-

geneous one-particle density p, . (r). The free energy of
the counterions is a functional of p, (r), and depends
parametrically on the macroion configuration [RJ] (1(j(/t/„, ). It is conveniently separated into ideal, ex-
ternal, Coulombic, and correlation parts
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number density p, =p, (r); fQ+p/kaTp, is. well known as
a function of the dimensionless Coulomb coupling con-
stant I,. =e~/ea, kqT. , where a, . =(3/4', . ) ' [91.

The one-particle density may then be calculated by
minimizing the approximate free-energy functional
V([p, . (r)];[R~]), defined by Eqs. (I) and (2a)-(2d),
with respect to p, (r), subject to the global charge-neu-
trality constraint,

,drp, (r) =N, . =ZN„, . (3)

= —„drp, . (r)V~,.v„„.(~r —R, ~) . (4)

In the case of a weak inhomogeneity and small ma-
croion density, one is justified in neglecting V,.„„and ex-
panding V;d to second order in p, (r) —

p, . , where p, .

=N, /V is the mean density of the counterions. Then, the
above variational problem may be solved exactly. The re-
sulting p, . (r) is then a superposition of Debye orbitals
centered on the Rj and the standard DLVO pair po-
tential between macroions is recovered, provided the
constraint is imposed that p, . (r) vanishes whenever

~r
—R, ~

(R. More generally, a quadratic free-energy
functional always leads to strictly pairwise additive in-

teractions, and higher-order terms in the functional Tay-
lor expansion yield more-than-two-body effective interac-
tions between macroions.

The variational problem cannot, however, be solved
analytically with the full free-energy functional (l), and
one must resort to numerical simulation. Following the
ideas of' Car and Parinello [6], the counterion density

p, . (r), or, more precisely, its Fourier components pk, , are
regarded as dynamical variables coupled to the macroion
degrees of freedom; classical equations of motion are de-
rived from the Lagrangian

r= —,'M g R +-, m, gipk, i'-

j=l k

—g v„„„(~R; —R, ~
) —7 ([p,. (r) ];[R,] ), (5)

where M is the physical macroion mass, v„„„is the direct
macroion-macroion pair potential (which is purely Cou-
lombic for ~R; —R, ~

& 2R), overdots denote time deriva-
tives, while m~ is a fictitious mass associated with the
dynamical variables p~, If, in appropriate units, mf is

chosen ((M, the resulting one-particle density is expect-
ed to stay close to the true adiabatic solution along the
phase-space trajectory mapped out by MD simulations of
the equations of motion for the Rj and pk, derived from
the Lagrangian (5).

Once p, (r) has been determined for a given macroion
configuration, the counterion-induced force acting on the
jth macroion follows from the Hellmann-Feynman the-
orem,

F) = —Vg V([p, (r)];[R,])

A technical difficulty arises from the fact that p, .(r) is
a rapidly varying function in the vicinity of the macroion
surfaces; as a result of the combination of excluded-
volume eAects for ~r

—
R~~ (R and strong Coulomb at-

traction for ~r
—R, ~

& R, the counterions pile up in the
electric double layers, where p, . (r) rises sharply above the
mean counterion density p, . Hence a very large number
of Fourier components (with wave vectors k compatible
with the periodic boundary conditions imposed on the
basic simulations cell) is required to yield a reasonably
accurate representation of p, . (r). The present situation is
even worse than the quantum-mechanical ion-electron
case [6] because of the high macroion charge. In the
latter case a pseudopotential is constructed to avoid the
rapid oscillations of the true valence-electron wave func-
tion inside the ion core, such that the resulting pseudo
wave function agrees with the true wave function outside
the core region, but remains smooth inside, while conserv-
ing the norm. We have followed a similar idea in the
present, purely classical context, to suppress the discon-
tinuous behavior of the local density p, . (r) at the ma-
croion surfaces. Our procedure involves two closely relat-
ed steps. First the conterions are allowed to penetrate the
macroions by suppressing the macroion-counterion repul-
sion for r & R and replacing it by a smooth extrapolation
of the Coulomb attraction. In practice we replaced the
true macroion-counterion pair potential by the "pseudo-
potential" i', '„,. (r ) = —(Ze /er )erf (r/R, ), where . R, .

=R/2. The extra (unphysical) counterion charge inside
the macroion core is compensated by increasing the ma-
croion charge from Ze to (Z+Z*)e, so that the total
macroion charge (renormalized surface charge plus coun-
terion charge of opposite sign inside the core) remains, on

average, equal to the physical charge Ze; the average
counterion density p, is increased accordingly. It is im-

portant to stress that Z* is not an adjustable parameter,
but is uniquely determined as explained below. The per-
meability of the macroions leads to spurious fluctuations
of the counterion charge density inside the cores. These
Auctuations are stabilized by simultaneously assigning a
severe free-energy handicap to the excess counterion
charge; this is achieved by modifying the free-energy
functional for counterion densities exceeding a cutoff
value p,"."' so as to stiffen p, . (r) inside the cores. In prac-
tice, we added an arbitrary positive free-energy contribu-
tion to fgq pin the correlatio-n term (2d), which increases
rapidly for counterion densities p, & p,""'.

The whole pseudopotential procedure sketched above
should result in a counterion density p, . (r) which is

smooth inside the macroion cores, but coincides with the
physical counterion density outside the cores. The auxili-
ary parameters Z* and p,"."' were determined self-con-
sistently, for given values of the temperature T and ma-
croion density p„, =N„,/V, by explicit solutions of the
variational problem for a highly simplified geometry, in-

volving a single macroion in its spherical Wigner-Seitz
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cell [10]. For this geometry, p, . (r) was calculated for the
two situations where the macroion core is penetrable and

impenetrable by the counterions. p,", "' was chosen equal to
the value of p, . (r) at the surface of the impenetrable ma-
croion, while Z* was varied until the total charge of the
penetrable macroion matched the physical charge Ze of
the impenetrable macroion, thus ensuring strict equality
of the two counterion densities outside the core, in view of
the spherical geometry and Gauss' theorem. Since the lo-

cal environment of a macroion in a concentrated suspen-
sion has approximately spherical symmetry, it is reason-
able to assume that the previousely determined values of
p,

""' and Z* are transferable to the many-particle con-
figuration generated during the simulations. This
transferability was explicitly checked during the MD runs

by monitoring the total counterion charge inside the ma-
croions; the latter was always found to differ by less than
1% from the assumed Z* value. Moreover the root-
mean-square dipole moment of the charge distribution in-

side the penetrable macroions was found to be systemati-
cally only a very small fraction (less than 1%) of the
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characteristic dipole Z*eR.
The whole procedure was implemented in two extensive

MD runs and the results compared to those based on the

pairwise additive, effective DLVO potential between ma-

croions. Room temperature (T =300 K) was imposed by

a Nose thermostat [11] for the macroions, e was taken

to be equal to 78 (water), while R =53 nm. p, (r)
was defined on a 64 -point grid and statistical averages
taken over 10 time steps of length ht =0.001570, To

=(MR Ik//T)'/. In run I, Z =200, N„, =31, and the
macroion packing fraction r1=4/rp„, R'/3=0. 1, the re-

sulting Z* =66.6, while p,"."'R'=11.6. In run 2, Z =100,
N„, =53, and r1=0.3 (Z* =67.3, p,'. "'R'=12.5). In both

cases counterion screening is expected to be relatively

weak, since Xg turns out to be comparable to R.
The macroion-macroion pair distribution function g(r)

from run I is compared in Fig. 1(a) to the corresponding
results based on the DLVO potential, and on two

modifications of this effective pair potential [2,10]. In

this case DLVO theory is seen to provide a reasonable
effective interaction between macroions, whereas the
g(r)'s calculated from the two modified theories strongly
overestimate or underestimate the macroion structure.
At the higher packing fraction (run 2), however,

significant differences arise between the pair distribution
functions calculated from DLVO and ab initio theories,
as illustrated in Fig. 1(b), while the two modified

effective pair potentials are found to fail completely.
Strong discrepancies between ab initio and DLVO-type
theories are also apparent in the macroion bond-angle
distribution function g3(8,r) shown in Fig. 2 for the same
state point and for all macroion spacings r ~ 3.2R. This
function provides a measure of triplet correlations in the
suspension.

In summary, we have proposed an ab initio procedure
for the simulation of charge-stabilized colloidal suspen-

sions, which properly includes nonlinear screening and
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FIG. 1. Macroion-macroion pair correlation function g(r) vs

reduced distance rlR for (a) run I and (b) 2 (solid lines). The
other curves are based on Debye-like pair potentials, calculated
from DL VO theory (long-dashed cu rve), mean-spherical-
approximation-like theory [2] (short-dashed curve), and the
Poisson-Boltzmann cell theory of Ref. [IO] (dotted curve).
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8/~
FIG. 2. Bond-angle distribution function g,.(O,r) of particle

triplets that have two interparticle distances smaller than
r=3.2R vs reduced bond angle 0//r. The thermodynamic state
and the symbols are as in Fig. 1(b).
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many-body interactions between macroions induced by
the counterions. The traditional DLVO theory is found
to fail for large macroion packing fractions. The present
method may be extended to treat the strong screening re-

girne in the presence of a high concentration of added
salt, a situation which is expected to enhance the dis-

crepancies between ab initio and DLVO results.
Whereas MD was used in the present work, which was

restricted to static equilibrium properties, the ab initio
method may also be combined with Brownian dynamics
[l2] to investigate macroion diffusion and other time-
dependent properties. Work along these lines is in pro-
gress.
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