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We construct a 19-bit lattice-gas model which is shown to exhibit spontaneous fluctuation correlations
as produced in a thermal fluid system. Thus the lattice gas can be considered—in the same sense as a
real fluid— as a reservoir of excitations with wavelengths and frequencies ranging from the microscopic
level to the hydrodynamic scale. In particular the dynamic structure factor obtained from lattice-gas
simulations is in agreement with the classical Rayleigh-Brillouin spectrum of real fluids.
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A most important function in the statistical mechanical
study of fluid systems is the dynamic structure factor
S(k,w), the space and time Fourier transform of the den-
sity fluctuation autocorrelation function [1]. The impor-
tance of S(k,w) stems from its content reflecting the dy-
namics of the fluid system as a reservoir of excitations
over a wide range of wavelengths and frequencies, from
the molecular level to the hydrodynamic scale. The sus-
ceptibility S(k,w) can be computed from statistical
mechanical theories and measured by scattering experi-
ments and by numerical computations, e.g., molecular-
dynamics simulations [1]. Recently, a new computational
approach to fluid dynamics has developed: the lattice-gas
automata (LGA) method [2]. LGA’s have proved very
efficient and powerful, e.g., for 2D and 3D weakly tur-
bulent flows, for low-Reynolds-number complex flows, as
well as for reactive systems [3]. In statistical mechanics
a remarkable accomplishment of the LGA method has
been the measurement of the non-Boltzmann persistence
of long-time correlations evidenced with unprecedented
accuracy [4]. These and the above-mentioned phenome-
na are well described by athermal models, i.e., single-
speed LGA’s without, or with trivial, energy conservation.

Obviously in order to have a full fluid-dynamics
description, we must associate temperature to the lattice
gas. Therefore we need a multispeed model (ideally a
model with velocity distribution). A complete description
fulfilling the conditions necessary to define the thermo-
dynamic state requires (i) that mass conservation,
momentum conservation, and energy conservation be
satisfied by the LGA collision rules; (ii) that each conser-
vation law hold independently (e.g., collisional energy
transfers must redistribute energy among particles in a
nontrivial way); and (iii) that there be no additional con-
served quantities (susceptible to produce spurious invari-
ants in LGA’s [5]1). Furthermore the LGA should exhibit
correct hydrodynamic behavior, that is, the symmetry of
the lattice must be sufficient to guarantee the correct
form of the hydrodynamic equations [2]. In addition we
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require that, for a single-species system, all particles have
the same (unit) mass, and that rest particles (particles
with zero velocity) have zero energy [6]. These condi-
tions impose that there be more than two nonzero veloci-
ties. When all these criteria are taken into account, none
of the “thermal” LGA models so far proposed is fully sa-
tisfactory [7].

Here our concern is to construct a lattice-gas model
with the philosophy of a classical hard-sphere fluid. We
consider a two-dimensional LGA with hexagonal symme-
try. Particles with unit mass undergo displacements with
velocity moduli 1, v/3, and 2 (in lattice unit length per
time step), and have energy ¥, 3, and 2, respectively,
and rest particles have zero energy. Velocities 1 and 2
correspond to displacements by one and two lattice unit
lengths, respectively, in one time step along any of the six
lattice directions, and velocity V3 corresponds to dis-
placements to the next-nearest-neighboring nodes along
any of the six directions bisecting the lattice directions
[see Fig. 1(a)l. Thus we have a 19-bit model residing on
a triangular lattice. Within this lattice, particles obey the
exclusion principle [2] and undergo collisions according
to mass, momentum, and energy conservation laws.
Some of the most elementary collisions are shown in Figs.
1(b)-1(e). The 19-bit model is a probabilistic LGA with
symmetrical transition probability matrix and all transi-
tions between input and output configurations are set to
be equally probable for all compatible states according to
basic conservations.

The microscopic evolution of the lattice gas is ex-
pressed by a set of microdynamical equations [2] which
are the formal representation of the two-step sequence of
collision and propagation. In the LGA implementation,
the collision table is the operational realization of the col-
lisional part of the microdynamical equations. The pro-
cedure consists of classifying all configurations according
to the values of the invariants. In the collisional transi-
tions we randomly choose an output state among all
states belonging to the same class as the input state (in-
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FIG. 1. The 19-bit model for thermal LGA. (a) Channel la-
beling and velocities on the triangular lattice. (b)-(e) Elemen-
tary configurations yielding collisions with energy transfer.

cluding the input state itself, as there is a large number of
states— up to 257—in most classes) [8].

The main goal in the present work is to establish the
existence of spontaneous thermal fluctuations in the 19-
bit LGA model. Such fluctuations are most convincingly
evidenced by the line shape of the dynamic structure fac-
tor S(k,w). To obtain S(k,w), we measure the space
and time density fluctuations 8p(r,r) in the lattice gas
based on the 19-bit model collision rules, and then we
construct the density autocorrelation function. Computa-
tions are carried out under the following conditions: The
system has periodic boundary conditions and is initialized
with zero total momentum; thus the system is at rest and
measurements are performed when the equilibrium state
is reached [9]. The autocorrelation function (8pf (w)
x8pi(w)) is computed by space and time Fourier trans-
formation of the original data over the whole lattice with
angular integration over wave vectors with the same
modulus and over 2048 time steps. The susceptibility
S(k,w) is treated as a spectral function, i.e., as a func-
tion of @ at fixed values of the wave number k. For each
value of k, noise reduction is obtained by averaging over
400 spectra.

A typical spectrum is given in Fig. 2(a). It shows the
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FIG. 2. The dynamic structure factor S(k,w) as measured
from spontaneous fluctuation correlations (lattice size 512
x512). (a) 19-bit LGA (k/ko=14.422, density per channel
n=0.317; energy density per node, 6.74). (b) Enlargement of
part of the spectrum with Lorentzian fit, Eq. (1). (c) FHP-I
model (k/ko=14.422, n=0.389): The Lorentzian fit is slightly
above the measured spectrum. Horizontal scale: o is given in
reciprocal time-step units; vertical scale: relative intensity,
S(k,w)/X% S (k,0)Aw, with Ae =27/2048.

characteristic line shape as found in real fluids where the
spectral function derived from the linearized hydro-
dynamic equations reads (to good approximation) [1]

2z Stk,ow) _ y—1 2k?
N S(k) Y 0+ (yk?)?

| Ik’
+— ,
% % (k)2 +(Tk?)?

(1

where S(k)=(|6pi|? is the static structure factor (see
comments below) and N is the number of particles. Here
x is the thermal diffusivity; =% [v+ (y — 1)x], where v
is the longitudinal viscosity; ¢, is the adiabatic sound ve-
locity; and y is the ratio of specific heats. Equation (1) is
the long-wavelength limit of the susceptibility S(k,w)
and is expected to hold also for lattice gases in the same
limit [10]: The fit of this approximation to the measured
LGA S(k,w) is shown in Fig. 2(b). We observe that the
fluctuation correlations are well described by the full
Rayleigh-Brillouin spectrum showing the central peak
characteristic of the energy density fluctuations and the
two shifted peaks characteristic of the sound modes.
Similar measurements performed with the FHP-I model
[11] show, as expected, that the spectrum contains only
sound mode peaks [Fig. 2(c)]. We also performed fluc-
tuation correlation measurements for the two-speed
square lattice (8-bit) model [12] and for the two-speed
triangular lattice (“‘double FHP,” 12-bit) model: None
of these models possesses intrinsic temperature fluctua-
tions as evidenced by the absence of heat peak in S(k,w)
[13].

We tested the validity of the 19-bit LGA model by
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measuring the wave-number dependence of the frequency
shift wy, i.e., the position of the sound peaks, and of the
linewidth of both the central peak and the sound peaks.
A test with the FHP-I model for the k dependence of the
sound peak frequency shift was found to give excellent
agreement with the theoretical prediction w; =c;k, with
¢, =27"2 2], as shown in Fig. 3(a). The same figure
shows that the correct linear k dependence is obtained for
the 19-bit model where the measured value of the sound
velocity is ¢;=1.1. In the linearized hydrodynamic
domain the half-widths of the peaks in S(k,w) are given
to good approximation by Awo=yxk? and Aw, =Tk ? for
the central peak and the sound peak, respectively. Thus
the k2 dependence of the linewidths, shown in Fig. 3(b),
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FIG. 3. k dependence of the S(k,w) spectral features. (a)
Sound peak frequency shift w; =c,;k (open squares, 19-bit mod-
el; solid squares, FHP-I). The lower solid line has slope
¢ =272 the slope of the upper solid line is obtained from Eq.
(1) fitted to the simulation data yielding c;=1.1. (b)
Linewidth of the sound peak Aw; =Tk ? (open circles) and the
central peak Awo=yxk? (solid triangles). Slopes of the linear fit
yield F=0.408 and y =0.354 for the 19-bit model. (c) Sound
attenuation coefficient for FHP-1 (solid circles); the solid curve
is To(1+&%2) ™" with 2lFo=v(k =0)=0.625 and &=4.6.
Values are expressed in lattice units.

corroborates the validity of the 19-bit model. Further-
more the values of the transport coefficients and of the
sound speed (see caption of Fig. 3) are compatible with
the Boltzmann level values [10]. However, the linewidth
of the FHP-I spectrum yields a value for the damping
coefficient which is lower than the data obtained from
sound attenuation measurements of a forced perturbation
[14], indicating that the present k domain [here 4
<k/ko <40, with ko=(27/512)2/~/3 in reciprocal-
lattice units] is outside the long-wavelength hydrodynam-
ic regime. For large values of k (in real fluids, when ko,
with o the interaction potential range, is no longer much
smaller than 1) deviations from classical hydrodynamics
become important: Nonlocal response renders the trans-
port coefficients k and ® dependent [1]. Evidence of
nonhydrodynamic behavior for the FHP-I model in the
present wave-number range is illustrated in Fig. 3(c)
showing the k dependence of the sound attenuation
coefficient.

Static properties in real fluids also become k dependent
at high k values, e.g., the sound velocity which is relat-
ed to the reciprocal static structure factor S(k). How-
ever, in the lattice gas there are no static correlations,

(8p(r)ép(r')) < 8(r—r'), and S(k=0)=const. [Note
that at k =0, S(k) =0 [15].] One has [7]
S(k)=p~"' X)) =81, ()
J

with p the average density per node, and én; the density
fluctuation in channel j. S(k) is easily obtained by sum-
ming S (k,w) over frequencies [16]; for both the FHP-I
model and the 19-bit LGA, we find agreement with Eq.
(2). We also evaluate the Landau-Placzek ratio [1] from
the fit of Eq. (1) to the simulation data: The estimated
value of y is ~1.37.

For low k values, the situation is somewhat delicate for
the lattice gas as compared to the real fluid where one as-
sumes that a large reservoir thermalizes the sampling
domain in the thermodynamic limit such that the grand
ensemble applies [17]. The lattice-gas universe is finite
by construction (with box-type conditions or periodic
boundary conditions). Consequently the lowest k value is
set by the reciprocal size of the lattice, ~L ~! and when
k approaches this lower bound, finite-size effects can
manifest and produce “unphysical”” dynamical recorrela-
tions with periodic boundary conditions. Therefore the
validity of the k domain investigated here has a lower
limit set at k/ko=12 [18].

In conclusion, within the limits of the criteria imposed
to comply with the requirements of a simple thermal
LGA, we have constructed a minimal 2D model which
can be shown to be free of known spurious invariants
[19]. The 19-bit model presented exhibits actual ther-
mohydrodynamic fluctuations as evidenced by the dy-
namic structure factor S(k,w). So the LGA can be
viewed—in the same sense as a real fluid— as a reservoir
of excitations over a wide range of wavelengths from the
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microscopic level (the lattice mesh) to the macroscopic
scale (the size of the lattice). The correlations dynamics
is correctly described by the hydrodynamic structure fac-
tor S(k,w); the corresponding wave-number range sets
the limits of validity of the classical collective-mode be-
havior of the LGA.
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