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The two-impurity Kondo Hamiltonian is known to possess a multicritical point separating stable
Fermi-liquid phases in which the two impurities either form a singlet or else are screened by the conduc-
tion electrons. We propose an exact critical theory for this non-Fermi-liquid multicritical point, using
conformal field theory methods, which predicts all critical properties including the finite-size spectrum,
specific heat, susceptibilities, renormalization-group behavior, residual entropy, scattering matrix, and
local pair Green's function.

PACS numbers: 75.20.Hr

The two-impurity Kondo problem has been studied as a
step towards the Kondo lattice [1-5]. It exhibits two
competing effects: a tendency for the two impurities to
form a singlet when the interimpurity coupling K is large
and antiferromagnetic, and a tendency for the conduction
electrons to screen the impurities when K is large and fer-
romagnetic. In general, there need not be a phase transi-
tion between these two limiting situations. However, if
particle-hole symmetry is maintained then a phase transi-
tion must occur, since the conduction electrons exhibit no
phase shift in the interimpurity singlet phase and a trl2
phase shift in the Kondo-screened phase, and since the
phase shift can only be 0 or tr/2 by time-reversal and
particle-hole symmetry [3]. Numerical renormalization-
group methods have indicated [1] that the multicritical
point separating these two phases is not of the Fermi-
liquid type; in particular, the impurity specific heat van-
ishes less rapidly than linearly as the temperature T 0.

We have recently developed the powerful methods of
conformal field theory to treat the single-impurity mul-
tichannel Kondo effect [6-10]. In this paper we demon-
strate that essentially the same methods can be extended
to treat the two-impurity Kondo problem. In fact, the
methods are extremely general and should be applicable
to essentially any problem involving local quantum-
mechanical degrees of freedom interacting with a gapless
continuum. Our approach is based on two lines of attack.

First of all, we use the techniques of two-dimension-
al boundary critical phenomena, developed primarily
by Cardy [11]. At long wavelengths, the problem is
equivalent to a (I+ I)-dimensional field theory with both
impurity degrees of freedom at the origin. Under renor-
malization we expect the impurity degrees of freedom to
be absorbed by the continuum degrees of freedom leaving
behind only an effective modified boundary condition.
The boundary is the line x =0 in a two-dimensional space
and (imaginary) time picture. At long wavelengths we
expect this boundary condition to be conformally invari-
ant. The existence of such a large symmetry group allows
for a classification of conformally invariant fixed points
and exact calculation of their critical properties.

Our second line of attack involves the separation of

spin and charge degrees of freedom in a one-dimensional
Fermi gas. More generally, when there are several chan-
nels of conduction electrons (even and odd parity for the
two-impurity Kondo problem) there are several different
ways of partitioning the degrees of freedom. These are
known as conformal embeddings. Each conformal em-
bedding corresponds to an equivalence between the Fermi
gas (in the continuum limit) and a direct sum of com-
muting Hamiltonians for various Bose fields, each repre-
senting certain degrees of freedom of the electrons. Al-
though the Hamiltonians are decoupled, certain selection
rules (or "gluing conditions") govern the precise way that
the various components are combined. In particular, the
finite-size spectrum is obtained by taking a direct product
of conformal towers from each sector with the gluing con-
ditions determining which combinations of towers occur.
Likewise, all operators are written as products of opera-
tors from the various sectors with the permissible prod-
ucts determined by the gluing conditions.

Bulk properties (such as the specific heat per unit

length) are independent of the gluing conditions, which
are determined by the boundary conditions. In fact, the
various conformally invariant boundary conditions corre-
spond exactly to the set of consistent gluing conditions.
We find that absorption of the impurity degrees of free-
dom induces a particular modification of the gluing con-
ditions. Depending on the resulting conditions the corre-
sponding fixed point may or may not correspond to a lo-

cal Fermi liquid. Generally, the existence of nontrivia1
conformal embeddings means that non-Fermi-liquid be-
havior is possible. Only very special gluing conditions
"confine" the various degrees of freedom so as to repro-
duce trivial, Fermi-liquid behavior. I n the single-
impurity Kondo effect we found that the Kondo interac-
tion only involved the electron-spin degrees of freedom.
The modification of the gluing conditions was given by
"fusion" of the spin degrees of freedom of the conduction
electrons with the impurity. This is a particular mapping
of each spin conformal tower into a set of other spin con-
formal towers governed by conformal field theory fusion
rules. In the two-impurity case the Kondo interaction
cannot be written in terms of electron-spin operators only
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[6]. We find that the modification of the gluing condi-
tions involves a rather different fusion process in this case
which implies an analogy with boundary critical phenom-
ena in the two-dimensional Ising model.

The two-impurity Kondo interaction only involves elec-
tron operators y at the two impurity sites ~ R/2. As-

suming a rotationally invariant electron dispersion rela-
tion, it is convenient to perform averages over directions
0 in k space: y+ I,

=fd 0 y i„. exp(T-ikA R/2). We
may define [I] normalized anticommuting linear com-
binations of these operators: y„,i = [y+,a+ y —,i]/
N„' (k), y„ I,

= [iII+ I,.
—y I]/N-„' (k), with N, „(k)

=2@[1~ (sinkR)/kR]/k. y„„can be extended to form
a complete orthonormal basis of eigenoperators of the ki-

netic energy. We may simply drop all operators but y,
and y„ from the Hamiltonian since the others do not par-

ticipate in the interaction. This leaves an effective one-
dimensional problem with two independent channels (e
and o) of electrons. These are left movers on the entire
real axis or, equivalently, left and right movers on the
positive axis (see Ref. [Sl, Appendix A). The Kondo cou-
plings in this one-dimensional problem are wave-vector
dependent but we may simply evaluate them at the Fermi
surface, up to irrelevant operators. Hence the two impur-
ities effectively sit at the origin which makes the problem
not fundamentally different than the one-impurity case.
The only difference is that the impurity is two spins in-

stead of one. We actually find it more convenient to work

with the linear combinations iaaf~ 2—= (y, ~ y„)/J2. The
Kondo interaction may be written in terms of electron
operators at the origin, y;, where a labels spin corn-
ponents and i labels the two linear combinations defined
above:

HKondo J+ [pl ~2 os I
+ pz os 2]. [Si+Sr]+Jm [iI

~ & opt iI 2
i~ ops] [Si —Si]

+J-[y( 7'oy2+Ipz ~ op~i [S/+S2].

Here cr refers to the Pauli matrices and we use an implied
summation over spin indices. J~=(J,+ J„)/2, where

J„„are the Kondo couplings for even and odd channels
defined in Ref. [1];J„„asdefined in Ref. [1],mixes even

and odd channels. We also include an impurity self-

coupling, 0, Jf KSJ'S2.
It is quite easy to see that there are stable Fermi-liquid

fixed points for large ~K( of either sign [ll. In these lim-

its there is a large gap between the triplet and singlet sec-
tors of the two impurities so we may "integrate out" one
or the other. This leaves either no interaction for antifer-
romagnetic K or a single-impurity two-channel s =1 Kon-

do problem for ferromagnetic K. This problem is known

to have a stable Fermi-liquid fixed point where the impur-

ity is completely screened by the two channels. The pro-
cess of integrating out the other impurity spin state pro-
duces only irrelevant operators [I]. The two Fermi-liquid
fixed points are essentially the same except that the fer-
romagnetic one has a z/2 phase shift. Adopting the same
linear dispersion relation for even and odd channels with

a symmetric band cutoff, the problem has particle-hole
symmetry (as well as time reversal). It then follows that
the phase shift can only be 0 or z/2 [3]. Thus there must

be some sort of phase transition between the two stable
fixed points. Assuming that it is second order, the inter-
mediate unstable critical point cannot be characterized
by a simple phase shift; i.e., it must not be a local Fermi
liquid.

It turns out to be useful to first consider the case
J —=0 because then the model has a higher symmetry;
we will see below that J- is irrelevant. (This was real-
ized independently by Jones [5].) In this limit the Ham-
iltonian has, in addition to ordinary spin, two commuting
"isospin" symmetries I~ and Iz. I = —,

'
P&[@;I, ty; &

—1]
and I; =giy; il, y; i q (k is m-eas. ured from the Fermi

level. ) A nonzero J- breaks this down to the diagonal
SU(2) subgroup, I ~+ I2—= I.

To study this critical point we adopt a convenient con-
formal embedding that makes explicit all three SU(2)
symmetries. Essentially we introduce three independent
bosonic fields g„(h;)p for ordinary spin and the two iso-

spins. a is an ordinary spin index and A is an isospin in-

dex. i labels the two different isospins. These fields can
be thought of as being the left-moving parts of SU(2)
Wess-Zumino-Witten fields [12]. The Kac-Moody cen-
tral charges are determined by the free-fermion current
algebras to be k =2 for spin and k=1 for isospin. It
turns out that these fields alone are not equivalent to the
four species of free fermions (two spins, even and odd).
We must also include an Ising-model sector [13]. The
Virasoro central charges then add up correctly to four:
c = —' + 1+1+ & . The con formal embedding corre-
sponds to "bosonization formulas" of the form
=g, (h;)~o, y =g' (h;)'to. Here o is the Ising order
parameter, g' =g2, g = —g~, (h;)' =(h;)2, (h;)'-
= —(h;)~. For the SU(2) sectors the conformal towers
are labeled by isospin and spin quantum numbers I; j.
For the Ising sector the three conforrnal towers are I
(identity), o (order parameter), and e (energy operator).
The free-fermion gluing conditions give the combinations
of conformal towers (I ~, li,j,Ising): (0,0,0, 1) (ground
state); ( —,',0, —,', o) and (0, —,', —2, o) (single particle or
hole); (0,0, l,e), ( —,', —,', l, l), and ( —,', —,',O, e) (two parti-
cles, two holes, or particle-hole). Parity, which switches

y~ and y2, interchanges the two SU(2)'s. A consistent
embedding also requires that we associate an intrinsic
parity of —

1 with the j=1 conformal tower and +1 with

all other spin and Ising towers.
The Kondo interactions (for J =0) take the form
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TABLE I. Conformal towers giving the spectrum at the mul-

ticritical point. All states with lF/vFz & I are contained in the
table (i.e., are primaries). In the first column, I is the total iso-

spin and P the total parity of the primary states.

p+
(-,' )—

Ising

intrinsic

parity
lE
I'Fi

0+, 1

J+J [S~+Sq]+J„,ge [S~ —Sq]. (Here J is the spin
current operator and P is the j= I primary field. ) It is
far from obvious what the gluing conditions are at the
multicritical point. However, we found a simple hy-
pothesis which gives excellent agreement with numerical
renormalization-group (NRG) results and physically
reasonable conclusions. The modified gluing conditions
are obtained by fusion in the Ising sector with the order
parameter a. The Ising fusion rules give a' 1 —a,
o'a-I+», and 0'»-o.. It should be emphasized that
this fusion hypothesis gives a fully consistent boundary
theory. With this very simple hypothesis all critical prop-
erties of the multicritical point can now be calculated ex-
actly, using established methods.

The finite-size spectrum implied by the above fusion is
given by the conformal towers in Table I. To compare
with the NRG results of Ref. [4], primary states have
been resolved (in the first column) into multiplets of diag-
onal isospin (I) using ordinary angular momentum addi-
tion rules and the total parity deduced by multiplying the
intrinsic parity (shown in the sixth column) by the sym-
metry of the wave function under the interchange of I~

and I2. Agreement with Fig. 3 in Ref. [4] is excellent.
Good agreement is also obtained with a much more ex-
tensive set of energy levels calculated by Jones [5]. The
same spectrum is also obtained if we begin with a degen-
erate ground state, i.e., start with a ~/2 phase shift in the
zero coupling limit. This means that the multicritical
point is, in some sense, symmetric with respect to inter-
changing the two equivalent stable (ferromagnetic or an-
tiferromagnetic) Fermi-liquid fixed points. [The three
SU(2) factors in the conformal embedding are equivalent
to an SO(7), k = I model. This SO(7) symmetry of the
free theory is preserved by the Ising fusion and hence ap-
pears at the multicritical point. ]

The operator content is obtained by applying fusion
twice (see Ref. [8]), i.e., o o.; l, e I+a. In particu-
lar, there are now two operators with dimension less than
I: (0,0,0, e) =e and ( —. , —. ,0, 1)=(h

~ )~ (hq)q, both of di-

mension —.'. The second operator is forbidden in the
Hamiltonian by the isospin symmetry but the first is not.
Thus» is the relevant operator which destabilizes the
multicritical point; i.e., if we move the impurity self-
coupling K slightly away from its critical value K, , we

produce a term in the fixed-point Hamiltonian propor-
tional to (K —K,. )e. This is precisely what happens in a

pure Ising system when a magnetic field is applied to a
free boundary. The two stable Fermi-liquid fixed points
correspond to the spin-up and spin-down boundary condi-
tions in the Ising model. A standard scaling argument
then determines the divergence of the impurity specific-
heat coefficient y=—limT .oC(T)/T~ (K —K, ), in per-
fect agreement with the NRG result [4]. The behavior of
C(T) right at the multicritical point is determined by the
leading irrelevant operator, the first descendent L —]» of
dimension —.This has the same dimension as the lead-

ing irrelevant operator in the two-channel s = —, one-

impurity Kondo problem and the same reasoning [8]
leads to C(T) ~ (T/T~) In(Tg/T), where Tq is the Kon-
do temperature.

The impurity susceptibility (induced by a uniform
field) is nonsingular at the multicritical point, in agree-
ment with the NRG result. This is diA'erent than in the
two-channel, s = —,

' one-impurity case [8]. The crucial
diAerence is that the dimension- & irrelevant operator
J

~ p, where P is the (0,0, I, I) primary field, occurs in

the Hamiltonian in that case but not in this one since it is
odd under parity. This operator is necessary to obtain a
singular susceptibility [8]. By contrast, the staggered
susceptibility g', i.e., the zero-frequency response to a
field coupling to 5] —Sq, is singular since this field
breaks parity and hence can couple to p=, of dimension

This leads to a logarithmic divergence of the stag-
gered susceptibility, with T, at the multicritical point.
The weakness of this divergence (i.e., logarithmic) may
account for the nonsingular behavior observed in quan-
tum Monte Carlo studies [2].

We now consider the eAect of other, symmetry-
breaking interactions. Apart from», the only other two
relevant charge-conserving rotationally invariant opera-
tors at the multicritical point are (h ~

)" (h 2)~ and
(h~)' (r')~(hq)q, where r is the Pauli matrix in iso-

spin space. Both of these operators break isospin down to
diagonal subgroups, I in the first case and I in the
second. The first operator is odd under parity and even
under particle-hole conjugation while the second operator
is the reverse. [The usual particle-hole transformation,

»,~y~, where» ~ is the antisymmetric tensor, in-

terchanges (h;)~ and (h;)'".] Considering only parity-
invariant interactions, we see that they will only be
relevant if they break isospin down to I and are odd un-

der particle-hole conjugation. A nonzero Kondo interac-
tion, J, fails on both counts and so is irrelevant. Since
there is only one relevant operator we generally expect to
pass through the multicritical point by varying a single
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coupling constant (i.e., J+, J-, J, or EC). Next we con-
sider the eA'ect of potential scattering, which breaks
particle-hole symmetry. Equal potential scattering in

even and odd channels corresponds to the operator
y~' y ~+y2 y 2~I . This breaks isospin down to a
U(1) x U(1) subgroup I~, Iz, and hence does not produce
any relevant operators when J—=0. The current opera-
tors themselves are expected to produce a critical line

joining smoothly with the multicritical point. The addi-
tional symmetry that must be broken corresponds to in-

terchanging y, and |[[Jf„. This can be achieved either with

a nonzero J—or else with unequal potential scattering for
even and odd channels. Hence even-odd symmetric po-
tential scattering is relevant iA' J,&J„, a conclusion also
found from the numerical renormalization group [5]. In

the case where even-odd and particle-hole symmetry are
both broken, and the relevant operator (h ~)" (r )~(h2)tt
is generated, we expect the system to cross over to
Fermi-liquid behavior. Since the relevant operator has
dimension —, , the specific-heat coefficient y diverges as

V, where V is the strength of the potential scattering,
for J„&Ju, or as (V, —V„) if J„=J„. (V, and V, are
the scattering potentials in the even and odd channels. )

The residual entropy is another universal feature of
boundary fixed points [9]. It equals zero at the Fermi-
liquid fixed points but has a value lng at the multicritical
point determined by the Ising-model modular S matrix:

g =S '/S I
=J2. Another property of interest is the

scattering matrix projected onto the one-electron sub-

space, S~[~, which is determined by the one-particle
Green's function. This has the values +1 and —

1 at the
antiferromagnetic and ferromagnetic Fermi-liquid fixed

points, respectively, corresponding to phase shifts of 0
and tr/2. At a non-Fermi-liquid fixed point it generally
has a value of magnitude less than I [10],corresponding
to inelastic scattering in the electron basis at zero energy
(i.e., energy-conserving processes in which one electron
goes into several electrons and holes). In this case the
scattering matrix can be expressed in terms of the Ising
modular S matrix [101 as St~&=(S /Sf)/(S'/S~') =0;
i.e., the scattering is pureiy inelastic in the electron basis
at zero energy. The same result was found for the two-
channel s =

2 single-impurity Kondo problem. In both
cases it seems to be connected with the fact that the non-
Fermi-liquid fixed point is symmetric with respect to two
Fermi-liquid fixed points at which S~[~ = + 1.

We can also calculate exact space- and time-depen-
dent Green's functions in the critical region. We find,
for example, that the singlet electron pair operator,

y~ y2pt. +y2 y~ ~e ~, exhibits a logarithmically diver-

gent local susceptibility near the impurities, as in the
two-channel single-impurity case [10].
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