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Singlet Ground State of the Periodic Anderson Model at Half Filling: A Rigorous Result
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It is proved that the ground state of the symmetric periodic Anderson model forms a total spin singlet
at half filling. This result can also be applied to the Kondo lattice model, at least for the weak and the
very strong antiferromagnetic-coupling limit. For the strong coupling limit of the Kondo lattice it is ad-
ditionally proved that the singlet ground state exists even when two holes are doped to the half-filled
band.
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The heavy-fermion systems are typical strongly corre-
lated electron systems where various interesting phenom-
ena are observed: unusually large effective mass, exotic
superconductivity, and magnetic properties [ll. One of
the canonical models for the systems is the periodic An-
derson model (PAM). In its strong coupling limit the
PAM reduces to the Kondo lattice model (KLM) which
is also often used to discuss the physics of the heavy fer-
mions. By intensive studies on these models a consensus
concerning the formation of the heavy-electron band has
been obtained on the level of mean-field-type theories
[2-4]. To proceed further beyond the mean-field-level

theories several numerical methods like Monte Carlo
simulation [5-7] or exact diagonalization [8,9] are also
used for these models. However, exact results for these
models are rather limited and still rare.

Recently the present authors provided a rigorous
theorem for the one-electron KLM: The ground state in

this case is an incompletely saturated ferromagnetic state
with Sto& (L —1)/2, where L is the number of lattice
sites [10]. Another limiting case which may be of more
significance is the half-filled case where the number of to-
tal electrons including the localized ones is equal to the
number of orbitals considered. For the half-filled case
the results of the numerical diagonalization for finite
small systems show that the ground state is a spin singlet

[8,9]. In this Letter we prove rigorously that the ground
state at half filling is unique and a singlet. Furthermore
we will extend the argument in the strong-coupling limit

of the KLM to the case where two holes are doped to the
half-filled conduction band.

The PAM in its simplest version which neglects the or-
bital degeneracy for the localized electrons (we will

denote them by d) is given by

SPAM I Z Xfci~scls +Z ~dnis
(ij ) S IS

+ Vg(c;td;, +d,tc;, )+U sy n;1n;1,

where n;, =d;,1;, is the number operator for the d orbital
at site i. In this Letter we restrict ourselves mostly to the

half-filled case: The number of electrons, N, equals the
number of orbitals, N=2L. The matrix element of the
mixing term is assumed to be finite, V&0.

For the PAM, the following theorem holds.
Theorem. —The ground state of the symmetric PAM

(i.e., ad = —U/2) at half filling is unique and has S =0 at
least if the lattice is bipartite; i.e., the hopping matrix ele-
ments connecting the e orbitals are finite only between
the two sublattices.

The instrument of the proof is essentially the reflection
positivity in spin space used by Lieb [11] to prove the cor-
responding theorem for the Hubbard model (HM) on a
finite lattice A which is written in his notation as

HM Z Z txycx&ya+ Z Uxnxf +xi .
cr xyEA

(2)

His proof consists of three steps. First he shows that
among the ground states there is one with spin S =0 for
an attractive case (U„~0 for every x). Next it is proved

that the ground state is unique and hence has S=0 if
U &0 for every x. Finally also for a repulsive case it is

shown that under the assumption of U„=Uthe ground

state is a singlet if the lattice is bipartite and the two sub-

lattices have the same number of sites (actually he treats
a more general bipartite lattice).

Proof —The PAM c.an be viewed as a generalized
Hubbard model when the "site" index x in Eq. (2) is

identified with a pair of lattice site i and "color" y of the
orbitals there, (i, y) x with y=c or d. Therefore, with

this identification the first part of Lieb's theorem 1 can be

applied to the U &0 PAM, and we can say immediately
that among the ground states there is at least one with

5=0. We will not reproduce his proof here. Note that
this holds for any c& (not only for the symmetric case,
eq = —U/2). However, as for the uniqueness of the

ground state, a direct application of the second part of
Lieb's theorem 1 encounters a difficulty since the on-site

interaction vanishes for the c orbitals.
Before going into the proof of the uniqueness we com-

ment on the repulsive PAM (i.e., U) 0) which is more

interesting and is our primary concern. For this case we
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can make use of mapping from the repulsive Hamiltonian
to the one with an attractive interaction, if eq= —U/2,
N =2L, and the lattice is bipartite (i.e., the hopping ma-
trix elements exist only between the two sublattices, A
and B) T. his mapping is obtained in the following way.
The Hamiltonian (1) is invariant under the following
particle-hole transformation:

L

P" Q [n;P;+ (I —n;)(I —P;) l . (4)

ticity of K and P;.
Now we define a configuration for the d oroitals as

p [n~, . . . , n;, . . . , nt. [, where n; is the occupation num-
ber and the projection operator to this configuration is

given by

c;,—e(i)c;„c;,—e(i)c;, ,
(3) It is clear that these projection operators map Q (Q) into

Q (Q). Let us consider the state where all the d orbitals
are occupied,

with e(i) + 1 for a site in the A sublattice and

e(i) —
1 for a site in the B sublattice provided that the

d-orbital energy satisfies the condition ed U/2: Hence
we call it the symmetric PAM. The mapping from the
repulsive interaction to the attractive one is obtained by
using the above transformation only for the operators
with one species of spin index, say s

As we mentioned before, concerning the uniqueness,
the original proof by Lieb requires the nonzero on-site in-

teraction at every site and therefore is not applicable to
the present case. This difficulty can be overcome by using
the special topology of the PAM in addition to the
reflection positivity in the spin space. In the following we

prove the uniqueness assuming an attractive interaction.
However, the particle-hole symmetry leads to the unique-
ness also for the U& 0 case under the condition men-

tioned before: ed —U/2, N=2L, and the lattice is bi-
partite.

Since the Hamiltonian is rotationally invariant in spin
space we study the problem in the subspace of Sf,& 0.
For the application of the reflection positivity in the spin

space a ground state y is written in the form

y g,pW, syl'yI', where y,' is an orthonormal real
basis of L electrons with spin s including both c and d
electrons (N 2L at half filling). There are m (t. )
basis states for each spin index. For the proof of unique-
ness of the ground state it is sufficient to show that the
Hermitian matrix W satisfies either W l Wl or
W= —lWl. Following Lieb, we consider the kernel Q of
the Hermitian positive semidefinite matrix R lWl —W.
It can be shown that the one-particle part of the Hamil-
tonian, K, and the number operators for the d orbitals,
P; d; d;, map Q to Q. The operators K and P; are
defined in the configuration space C with fixed spin in-

dex. Thus they are considered as the operators for the
corresponding spinless fermion system. Since R is a
linear operator, Q is a subspace in the configuration
space, C =QSQ, with Q being the complement of Q.
Therefore the uniqueness follows if Q=C or Q=C .
Note also that P; and K map Q into Q, due to the Hermi-

G;y;, (t ) =(i'j'le'"'lij&

then P P~ Pt. is the projection operator to pp.
Since the image of the projection operator P is one di-
mensional, it follows that pp C Q or pp C Q.

In the following we show that from pp we can in fact
construct all basis states in C™by successive operations of
P" and K. Among the projection operators defined al-
ready, there is one which projects to a configuration with
a single d hole at site i, P' P

~ (I —P; ) Pt. . Then
P'Kpp is the state where one electron is in the c orbital at
the site i with all the other electrons occupying the d or-
bitals at the other sites. It is possible to show that all
basis states with this d-electron configuration fixed are
connected with this state by (P'K) t with some integer q.
Since the d-electron configuration is fixed we focus only
on the single electron in the c orbitals. It is convenient to
define the one-particle Green function as

6;;(t) -&i'le' "'li)

-—+exp(ieqt)exp( —ikr; +ikr;),I

L I

where K, is the part of the c-electron hopping terms in E.
It is easy to see that the Green function is not identically
zero, 6;;(t)~0 Theref. ore all basis states in this sub-
space may be obtained after the successive operations of
P'K and orthogonalization.

Now we proceed to construct all states with two c elec-
trons. Let i and j be two different sites. Projection
operators P' and

P' P . (1 —P). . (1 —P) Pl J I

generate by P'~KP'Kpp the state where two electrons oc-
cupy the c orbitals at i and j and the other electrons
remain in the d orbitals at the other sites. Again it is pos-
sible to show that all basis states with the d-electron
configuration fixed are connected with this state by
(P'~K)v with some q. This can be seen through the cal-
culation of the two-particle Green function for the e elec-
trons:

exp( ik~r;) exp( ——ik~rj') exp(ik~r;) exp(ik~rj. )
exp[i(et, +eg )tj exp( —ik2r; ) exp( —ik2rj') exp(ik2r;) exp(ik2rj)
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This result shows that the Green function is not identical-
ly zero, which means that all basis states in this subspace
are connected. Therefore all basis states in this subspace
of the two conduction electrons are created by successive
operations of P"K to the state P"KP'Kpo and orthogonal-
ization. From the above arguments it is clear now that
all configurations with a larger number of c electrons as
well can be constructed in this manner from po. This
completes the proof for the uniqueness.

The final step is to show that the ground state has
S =0 for the repulsive case too (U & 0). To this end we

note that the energy band of the conduction electrons s&

is symmetric for the bipartite lattice which has electron-
hole symmetry. With the mixing term a hybridization

gap opens at s=o [2-4]. Therefore at U=o the ground
state is the state where the lower hybridized band is com-

pletely occupied, leaving the upper hybridized band emp-

ty. This is a unique ground state and has S=0. Further-
more, it is obvious that there is a finite energy gap to the
excited states. From the continuity with respect to U the
unique ground state for U & 0 also has 5 =0 since there
is no level crossing. Q.E.D.

In the large-U limit, the PAM is mapped to the KLM,

The point of the present proof is the sign of the Hilbert
space basis, and we will set for the site representation the
following:

(io)

We use the convention that the creation operator of the
up-spin electron is placed on the left. In the case of
U =+~, the basis states with i =j are excluded from the
Hilbert space and the dimension of the Hamiltonian is

L(L —1).
The Schrodinger equation of the two-particle HM is

Here the transfer integral —t (-—t/2) is assumed to be
negative and to exist between the nearest-neighbor pairs.
Since all the oA-diagonal elements of the Hamiltonian
are negative and the Hamiltonian is connected, we can

apply the Perron-Frobenius theorem. It states that the
ground state Og is unique and a positive vector apart
from an overall phase. We can immediately say that the

+g is a spin singlet by showing that it has a finite overlap
with a trial singlet function

PKLM = r g Qcl~vcjs Jg g SI' ~, 'cltc(s'
(ij & s i ss' ('4& (c'icj/ o'Jcj'f ) [0& = [i,j&+ j(,i&, (i 2)

with an antiferromagnetic exchange coupling, J
= —SV /U. Therefore the theorem proved implies that
the ground state of the KLM with the half-filled conduc-
tion band is unique and has 5 =0 in the weak-coupling
limit at least for the bipartite lattice. On the other hand,
in the large-(J~ limit it is trivial that the ground state is

the total spin singlet state which is nothing but the array
of the local singlets. It may be natural to expect that the

ground state of the KLM is always a singlet at half
filling. However, the nature of the singlet changes from

the collective singlet in the weak-coupling limit, where

the localized spins are partially compensated by their in-

tersite correlations, to the local singlet in the strong-

coupling limit.
In the limit of J= —~ we can extend the result on the

KLM away from half filling: The ground state of the
KLM remains to be a singlet after doping two holes. To
show this we use the following mapping. The KLM with

J= —~ is equivalent to the U = +~ H M once singlet

pairs in the KLM are identified with vacant sites in the
HM and lonely localized spins in the KLM with electrons
in the HM. Note that when the KLM has W, conduction
electrons, the number of electrons in the corresponding
HM is L —/V, and that the transfer integra1 is reduced by
a factor of & . Consequently we can prove the singlet

ground state of the J= —~ KLM with two holes by
showing that the two-electron U = +~ H M has a singlet

ground state. This is a very natural statement and in fact
we can prove it easily as shown below.

Because the HM is rotationally symmetric in the spin

space, it is sufficient to consider the subspace of St,t =0.

which is obviously non-negative [12]. Actually the
present theorem holds for any U (not only for U =~) as

1ong as all the transfer integrals are negative. When
U & ~, the basis states [~i, i&] are included and the term

b~U~i,j & is necessary on the right-hand side of Eq. (11).
However, because this is a diagonal term in our basis, the
Perron-Frobenius theorem holds and the ground state
remains to be a spin singlet.

In this Letter we have shown rigorously that the
ground state of the symmetric periodic Anderson model is

unique and a singlet. The proof is based on the reflection
positivity in spin space introduced by Lieb [11]. The
present result may be the first example for which his

method concerning the uniqueness is generalized to the
case ~here the on-site interaction is not finite at every site
(orbital). To this end the special connectivity of the

periodic Anderson model played an essential role.
Since the periodic Anderson model reduces to the Kon-

do lattice model in its strong-coupling limit, the theorem

proved in this Letter states additionally that the ground
state of the Kondo lattice model with the half-filled con-
duction band is also unique and a singlet in the weak-

coupling limit. Although there is no rigorous proof to
date, the ground state of the Kondo lattice at half filling

may be a singlet for any J &0 since this is trivially true
also in the strong-coupling limit. On the other hand, at
the low-density side, it is rigorously proved that the
single-electron Kondo lattice model has a ferromagnetic
ground state [101. Therefore in the two opposite limiting

cases, the ground state of the Kondo lattice is clarified
with mathematical rigor. It is important to investigate



VOLUME 68, NUMBER 7 PHYSICAL REVIEW LETTERS 17 FEBRUARY 1992

how the character of the ground state changes as a func-
tion of the filling of the conduction band between the two
ground states with totally different character.

It is well known that the ground state of the antiferro-
magnetic spin- —,

' Heisenberg model is a singlet [13] and
even shows long-range order in three dimension [14]. We
would like to conclude this Letter by pointing out that
this problem of long-range order is particularly important
for the heavy-fermion systems, since the heavy-fermion
state is believed to be realized in a state either without
long-range order or otherwise in a state with a small or-
dered moment.
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