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A ring in a magnetic field whose direction varies in space is considered. It is shown that the Berry
phase accumulated by the spins of electrons encircling the ring affects the conductance of the ring in a
way similar to the Aharonov-Bohm effect. A time-dependent Berry phase is shown to induce a motive
force in the ring. This motive force couples to the electron’s spin, similar to the way Faraday’s law cou-

ples an electromotive force to the electric charge.

PACS numbers: 71.70.Ej, 02.40.+m, 73.50.Bk

Since its discovery in 1983, Berry’s phase [1] has been
the subject of numerous investigations [2]. The simplest
example that illustrates the concept of Berry’s phase is
that of a spin + that follows adiabatically a magnetic
field whose direction varies in time. When the magnetic
field returns to its initial direction, the spin wave function
is found to have acquired a geometric phase factor. This
phase can be regarded as induced by a geometric flux,
similar to the phase shift induced by an electromagnetic
flux in the Aharonov-Bohm effect [1,2].

Motivated by this similarity between the fluxes, this
paper investigates Berry-phase analogies to two physical
effects involving an electromagnetic flux: the induction of
current in a conducting ring by a time-dependent elec-
tromagnetic flux (through Faraday’s law), and the effect
of time-independent flux on the conductivity of a meso-
scopic ring (through the Aharonov-Bohm effect) [3.4].
In these analogies, the electron’s spin plays the role
played by the electric charge in the electromagnetic
effects. Another analogy, introducing persistent currents
induced by Berry’s phase in ballistic rings, was recently
discovered in an instructive work by Loss, Goldbart, and
Balatsky [5], who have also conjectured related effects of
Berry’s phase on the magnetoconductance. In the spirit
of that work, we define here a thought experiment in
which electrons in a mesoscopic conducting ring follow
adiabatically a magnetic field whose direction varies spa-
tially, and thus accumulate Berry’s phase. By mapping
that phase onto an effective vector potential, we show that
when the phase is time independent, it affects the ring’s
conductance. When the phase varies in time, it creates a
(nonelectro) motive force that induces a current in the
ring. By discussing the analogies to the electromagnetic
phenomena, we point out that the effect of a time-
independent geometric flux is a nonlocal effect and is
therefore observable only in mesoscopic rings, while the
effect of a time-dependent geometric flux should be ob-
served also in macroscopic rings, i.e., it does not depend
on phase coherence. We examine the conditions for adia-
baticity to be maintained, and their dependence on the
disorder in the ring. It should be stressed that similar to
the persistent currents discussed by Loss, Goldbart, and
Balatsky [5], the phenomena we discuss are independent
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of the electric charge. Our results stem from the Zeeman
interaction, and are therefore valid for all spin-+ parti-
cles, irrespective of their charge.

We consider a quasi-one-dimensional ring, whose ra-
dius is a. The ring lies in the x-y plane, and its center is
in the origin. A nonuniform magnetic field is applied on
the ring in the following way: First, a magnetic field B,
tangent to the ring is induced by a current-carrying wire
lying along the z axis. Second, a uniform field B- is ap-
plied on the system, parallel to the z axis. Adopting a cy-
lindrical coordinate system, the total magnetic field has a
component B, created by the wire in the ¢ direction, and
a component B- in the Z direction. Along the ring, the
magnitude of the field is constant, but the direction
varies. In fact, it follows a cone-shaped path, where the
angle between the cone and the z axis, denoted by a,
satisfies tana =B,/B. (see Fig. 1). The spin of an elec-

.

FIG. 1. The physical problem considered. A ring is put in a
uniform external magnetic field B- and a tangential magnetic
field B, created by the current-carrying wire. The ratio be-
tween the two fields defines the angle a.
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tron that slowly encircles the ring is then expected to fol-
low the direction of the magnetic field and thus accumu-
late a geometric phase of

)

i.e., half the solid angle subtended by the magnetic field it
goes through. (The 1,+ and |, — refer to the spin being
parallel and antiparallel to the field, respectively [1]).
The angle a is determined by the current through the
wire and by the uniform field along the Z direction.

Our discussion of the above-described thought experi-
ment involves three parts. In the first part we use the
Born-Oppenheimer approach in order to separate the
Hamiltonian of the system into adiabatic and nonadiabat-
ic parts. We show that the adiabatic part includes a
geometric vector potential that couples to the electron’s
spin. Assuming that the ring is one dimensional, its
Hamiltonian is

H=I*2M+V(¢p) —uB(9)- o,

lWV=x(1 £ cosa),

6}

where M= —(i/a)d/d¢ —eB-ma/2c is the generalized
momentum (a system of units where A =1 is utilized),
V(¢) is the impurity potential along the ring, u is the
magnetic moment, M is the mass of an electron, and o is
the Pauli matrix vector. Attempting to discuss the adia-
batic limit, we diagonalize the spin-dependent part of the
Hamiltonian, treating the angle ¢ as a parameter. We
obtain the eigenstates

0 isinyae "

) |1(¢)>= | )

Ccos 3 a

icostae”

I1(e0) = —siny a

corresponding to the spin being parallel (antiparallel) to
the magnetic field. The corresponding eigenvalues are
F uB, where B=(B}+B2)'2. Defining |¢) as the eigen-
state of the operator e, the two sets of states {|1(¢))
®|N0=<¢ <24 and {|]|(¥))®|9|0=<¢ <27} consti-
tute together a basis of the Hilbert space of the Hamil-
tonian (2). Each one of these sets spans a subspace in
which the spin is either parallel or antiparallel to the
magnetic field. The Hamiltonian H is now written as a
sum of an adiabatic part Ho, whose matrix elements are
nonzero only within each subspace, and a purely nonadia-
batic part H,;, whose matrix elements are nonzero only
between states of different subspaces. Using the method
outlined recently by Aharonov et al. [6] we find that

and

Hy=/2M) (M= A) Ag+ A, (M— A,)] ,
where

A, =(1/2a)sinalcosa 6+ $ —sinaoc-1.

By construction, Ho has a set of eigenstates |n, 1)
=|1(¢)>® w, (¢) in which the spin is parallel to the field,
and a set of eigenstates |n,|)=|](¢))®y}(¢) in which
the spin is antiparallel to the field. The wave functions
v (¢) and y!(¢) are eigenstates of the Hamiltonians

2
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(3)

2

with corresponding eigenvalues EJY. Each of these
Hamiltonians [Eq. (3)] is a projection of the full Hamil-
tonian onto one of the subspaces defined above.

The adiabatic approximation neglects H,. As seen in
Eq. (3), when this approximation is valid the ring can be
viewed as composed of two uncoupled electron gases.
Those gases are subject to the effect of different
geometric vector potentials, induced by the spatial varia-
tion of the direction of the magnetic field [7). The mag-
nitude of this vector potential is independent of the elec-
tric charge, but is rather determined by the direction of
the spin being parallel or antiparallel to the magnetic
field. The geometric vector potential is limited in magni-
tude, reflecting the restriction of the geometric phase to
the range 0-2x. Thus, for spin- 1 particles the geometric
flux enclosed by the ring is limited to the order of one flux
quantum. This restriction distinguishes the geometric
flux from the electromagnetic one. The two electron
gases are also subject to the effect of opposite constant
potential energy, originating from the Zeeman interac-
tion, to identical electromagnetic flux B-ra 2 and to iden-
tical impurity potentials. These observations conclude
the first part of our discussion.

In the second part of the discussion we analyze the con-
ditions under which H | can be disregarded. We start the
discussion by considering the ballistic case, where V' (¢)
=(), a case for which the full Hamiltonian (2) can be ex-

_m—4,)? I ., actly diagonalized [5]. The exact eigenstates for this case
Ho= M +V(p) —uB(p)- o+ SMa’ sin“a are e™[C\|1(¢))+ C3| ) (¢))], where n is an integer, (5;)
] isan eigenvector of the matrix
1 2 2'1’ -1 .
[n?—@n'—1)cos’ ¥ al —uB -

SaT " n cos’tal—p ario2 Sine

2n'— 1 4)
T sina ZMaz[n'z—(2n’—l)sin2§-a]+y8

and n'=n—eB.a’/2c. The energies corresponding to these eigenstates are the eigenvalues of the matrix (4). The adia-
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batic approximation taken in the previous paragraphs
amounts to approximating C, =1, C,=0 (C,=0, C,=1)
for eigenstates in which the spin is parallel (antiparallel)
to the magnetic field. As seen from the matrix (4), for a
ballistic ring the adiabatic approximation is valid (for all
values of @) when uB>n'/Ma?, ie., when the time it
takes an electron whose velocity is n'/a to encircle the
ring, Ma?/n’, is larger than the spin precession time
(uB) ~'. Hence, for electrons at the Fermi level, the con-
dition for the adiabatic approximation to hold is

uBalvp>1, (5)

where v is the Fermi velocity. In the presence of impuri-
ty potential, we treat H, as a perturbation. The eigen-
states of H}" are not ecigenstates of the momentum
operator I1, and therefore H, couples each eigenstate
[n,1) to a quasicontinuum of states |m,]) (and vice ver-
sa). As a result of that coupling, each adiabatic eigen-
state acquires a finite lifetime 7. This lifetime can be
perturbatively evaluated using the diagrammatic impurity
technique [4]. The details of this calculation are given
elsewhere [8]. Up to leading order in 1/ert (Where €x
is the Fermi energy and 7 is the elastic mean free time),
the inverse lifetime of an adiabatic state at the Fermi en-
ergy is

2D sin’a

a’ QuBry)i+1’

where D is the diffusion constant. For an electron to be
affected by the geometric flux, its spin has to follow the
direction of the magnetic field long enough so that the
geometric phase it accumulates is significant. Hence,
when the angle a is of order unity, the lifetime of the adi-
abatic states, given in Eq. (6), has to be longer than the
typical time it takes a diffusing electron to encircle the
ring, (2ra)?/D. This condition is fulfilled when

(6)

1
T

2uBty>> 1. 7

Therefore, in the diffusive regime, the adiabatic approxi-
mation is valid when the spin precession time is much
shorter than the time between elastic scattering events.
Equation (7) can be shown to be the condition for adia-
baticity also when a<<'1 [8], a case in which the electron
has to encircle the ring many times in order to accumu-
late a significant geometric phase. The adiabatic condi-
tion can be formulated in terms of the ac conductivity of
the ring (8].

We conclude the second part of our discussion by mak-
ing a few comments regarding the adiabatic condition
(7). First, we interpret its physical origin. As argued by
Thouless [9], the single-electron eigenstates in a disor-
dered system are a superposition of plane waves, with
typical spread of h/l, where [ is the elastic mean free
path. In Kkinetic energy terms, this width is translated
into A/t.. Therefore, the matrix elements of the gen-
eralized momentum operator IT between states whose ki-
netic energies differ by more than A/t are negligible.
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Consequently, so also are the matrix elements of H;. On
the other hand, flips of the spin due to H, occur only at
the Fermi level, i.e., between states whose kinetic energies
differ by 2uB. Hence, when condition (7) is valid, the
nonadiabatic matrix elements between states at the Fermi
level are negligible, and the lifetime becomes long.
Second, we comment that one should distinguish here be-
tween the diffusive limit 0,74 < 1 (where o, is the cyclo-
tron frequency) and the Landau levels limit w, 7> 1.
The relevant limit is determined by the value of the
electron’s g factor. Here we assume that the diffusive
limit applies. Third, we comment on the relevance of 1/
to interference effects. As discussed above, the geometric
phase accumulated by the electron depends on the direc-
tion of its spin. If that direction is flipped at various
points along the path, this phase is randomized. Hence,
nonadiabatic spin flips dephase the interference. In the
present work we neglect all other mechanisms of dephas-
ing, and therefore 7 is to be identified with the phase-
breaking time 7, The ratio of the circumference of the

ring to the phase-breaking length L,=(Dt,)'”? denoted
by I', is then
r= 2ra _ V8zsina (8)

Lo [I+QuBte)l'”"

We emphasize that as long as no other dephasing mecha-
nisms are present, this ratio depends neither on the radius
a, nor on the temperature 7. And finally, we note that
for an elastic mean free time of 10 ~'" sec and a g factor
of 10, the adiabaticity condition (7) is satisfied for fields
larger than 0.1 T.

In the third part of the discussion we assume that the
adiabatic limit is applicable and analyze the physical
consequences of the geometric flux. Assuming that the
Zeeman energy pB is smaller than the Fermi energy ey,
our ring consists of the two uncoupled electron gases de-
scribed above. The electric conductance of the ring is the
sum of the conductances of the two gases. As discussed
extensively in recent years [3,4], the conductance of a
mesoscopic ring depends on the flux threading the ring,
through the Aharonov-Bohm effect. In the configuration
we discuss, the flux threading the sample is the sum of an
electromagnetic flux dem =B-ma? and the geometric flux
Oy = 1 60(1 = cosa), where the =+ refers to electrons
whose spin is parallel (antiparallel) to the field. It should
be noted here that the sum of the two geometric fluxes
corresponding to the two gases equals a flux quantum.
Since all properties of the ring are periodic with respect
to one flux quantum, one can view the two electron gases
as subject to the influence of geometric fluxes of equal
magnitude and opposite signs. For rings in the diffusive
regime, the flux dependence of the conductance is mani-
fested in two different contexts, namely, the average con-
ductance of an ensemble of macroscopically identical
rings and the sample-specific fluctuations. The flux-
dependent part of the average conductance was calculat-
ed by Al'tshuler, Aronov, and Spivak [10]. Using their
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formula for each of the two electron gases in our ring, we find that the total quantum correction to the conductivity is

ela sinh(I")

sinh(I") ©)

do =" T | cosh(I") —cos[47(pem+ )/ 00l

cosh(I") — cosl47n(pem — dg) /00l |

The effect of the geometric flux on the sample-specific |
fluctuations of the conductance is best understood when
the periodicity of those oscillations with respect to B is
considered. In the absence of geometric flux (B,=0), the
¢o flux periodicity yields a field periodicity of AB-
=g¢o/ma?, irrespective of the spin direction. In the pres-
ence of geometric flux, a variation of B. varies both the
electromagnetic and the geometric fluxes. Thus the
periodicity with respect to B- is changed, and is no longer
independent of the spin direction. Specifically, when
B.<B, (ie., a— n/2), the geometric flux is approxi-
mately ¢9B-/2B,, and the B. period becomes

AB. =¢o/na’+ ¢o/2B, , (10)

where the + (—) sign refers to the spin being parallel
(antiparallel) to the field.

Equations (9) and (10) summarize our predictions for
the effect of Berry’s phase on the conductivity of a meso-
scopic ring. We now turn to discuss the case of a time-
dependent geometric flux, and, in particular, the currents
it induces in the ring. We consider the case in which the
tangential magnetic field is B,=B, coswt, and conse-
quently the angle a becomes time dependent too. In or-
der to avoid, at this stage, the complications involved in
the analysis of the adiabatic condition for that case, we
limit ourselves to the case in which e+ 0 < uB-, i.e., the
electron gas is spin polarized, and absorption of an energy
quantum hw still does not allow electrons to flip their
spins. For semiconducting rings, this condition may be
fulfilled at fields of the order of 1 T. Under this assump-
tion, the electron gas in the ring is subject to the effect of
a time-dependent geometric flux ¢, =% ¢oll +cosa(s)].
Consequently, this gas is subject to a motive force e,
given by e=—dg)@/dt, and this motive force induces a
current in the ring, according to Ohm’s law. Assuming
that BY <B., the motive force induced by the time
dependence of ¢ is

an

For B.=1 T, By=0.2 T, and o =1 GHz, this motive
force has an amplitude of 10 77 V.

There are a few points that should be stressed regard-
ing the case of a time-dependent geometric flux. First,
contrary to the effect of a time-independent flux, the
time-dependent geometric flux exerts a force on the elec-
tron [11], similar to the electric force exerted by a time-
dependent electromagnetic flux. Thus, similar to the ob-
servation of currents induced due to Faraday’s law, the
observation of currents induced by the geometric flux
does not depend on the electron phase being coherent
along the ring. Those currents should be observed in

e=— % wpo(BY/B.) *sin2wr .

macroscopic rings as well as in mesoscopic ones. Second,
the motive force induced in the ring is not electric, since
if the electrons were replaced by neutrons, the picture
would not have changed. The field, given by the deriva-
tive of the vector potential with respect to the time, does
not couple to the electric charge, but rather to the direc-
tion of the spin. And finally, the origin of the motive
force exerted on the electron can be understood by noting
that in our symmetrical structure the sum of the orbital
and spinor angular momenta in the z direction is time in-
dependent even when the angle a is time dependent.
Thus, a change in a transfers angular momentum from
the spin to the orbital motion of the electron. A more
general analysis of this force, from points of view of both
linear and angular momenta, will be presented in a future
publication.
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