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A simple ansatz is proposed for the statistical mechanics governing nonlinear steady-state transport in

mesoscopic systems. It is shown that unexpected, novel phenomena arise as a natural prediction of the
ansatz. In particular, we discuss the situation of resonant tunneling where the nonlinear effect is expect-
ed to be strongest.
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In the past few years, there has been tremendous pro-
gress in the understanding of transport in systems with

dimensions small compared to an equilibration length
(mesoscopic systems), from both the theoretical [1-6]
and the experimental sides [7-11]. In the linear-response
regime, much of the novel phenomena associated with

these systems can be understood in terms of elastic
scattering of incident electrons from one probe into
another, and the conductance of these systems can be ex-
pressed solely in terms of the transmission and reflection
coe%cients of electrons on the Fermi surface [1,4,6].

However, experimentally it is often found that the
transmission and reflection coe%cients T and R can vary
strongly (e.g. , in resonant tunneling experiment) on a
scale of less than a few meV and it is easy to reach the
nonlinear regime where voltage differences between dif-
ferent probes are large compared with the energy range
where T varies substantially [12,13]. In this case a
theory which incorporates the large current flow and/or
voltage difference in the system at the starting point is

needed to describe the experimental situation correctly.
Unfortunately there exists at present no general theory

of statistical mechanics for systems far from equilibrium.
The existing approaches on nonlinear transport in meso-

scopic systems are all based on the perturbation expan-
sion taking electric field as a small parameter [14]. The
usefulness of this approach is not certain for systems far
from equilibrium. Furthermore, in this approach current
is always calculated as a response of the system to an ap-
plied external potential, whereas in real experiments it

often happens that currents are driven through samples
and the resulting potential differences between leads are
measured. It is not clear whether these two approaches
are identical in the nonlinear regime where the I-V rela-
tion may not be unique.

The answer to these questions depends on the correct
statistical-mechanics rules governing nonequilibrium
mesoscopic systems and is unknown at present. In this
Letter, we shall study this problem by proposing an
ansatz for the statistical mechanics governing a meso-
scopic system away from equilibrium. We shall consider
the situation where voltage differences between different
probes are large compared with the energy range where
T's and R's vary, but small compared with the charac-
teristic energy of the reservoirs themselves, so that the
reservoir's behavior can be described by the usual linear-

= Z [~ij ~mme '"+~ij nm(k)e. (2)

where 5;; „„,(k) is an 5-matrix element describing
scattering of incoming wave p,„(k) to outgoing wave in

channel m in probe j. Notice that we have introduced a
phase 6,„ in y;„(k) to keep track of the phase coherence
of the system. The phase 6;„ is a result of random
thermal fluctuations at reservoir i and is completely un-

correlated between different reservoirs and different
channels. However, once the electron leaves the reser-
voir, the phase is fixed since there are no other phase
breaking mechanisms in the sample itself [1-6].

The dc current operator in probe i is

response theory. For simplicity we shall also restrict our-
selves to noninteracting electrons in the present paper.

The ansatz we propose is that under the above condi-
tions, a mesoscopic system in a nonequi li bri um but
steady-state situation can be treated as a system in equi-
librium, except that the boundary conditions are mod-
ified. In the present case, the modified boundary condi-
tions are constraints on the amount of current flowing

through the probes, or voltage differences between
different probes.

To put the ansatz in more concrete terms, we consider
a mesoscopic system connected by J probes to J reservoirs
and with Mj channels at each probe j. The presence of
an integer number of channels per probe is due to the
quantization of electronic motions transverse to the
probes [2,4]. We shall characterize each channel n in

probe j by a dispersion [4] s~„(k) =a~„(0)+(hk) /2m*,
where 6 k is the momentum associated with electronic
motions parallel to the probe. The Hamiltonian charac-
terizing the system is thus

H. = g;„(k)C,'„(k)C,„(k), (I)
l,i,n

where C;„(k) creates an exact scattering state IIt;„(k) of
the Hamiltonian incoming from channel n in probe i and
with momentum Ak. Notice that spin is being neglected
in our present discussion but can be included in a
straightforward generalization of the present theory.

The eigenstates ty;„(k)'s can be related to the incoming
plane-wave states p;„(k) =e '" '" through the 5 ma-i (I .r.,„+6,„)

trix,

ltl;„(k) =Sy;„(k)
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j; =—g j(x;.)dx;. , (3)

where L is the length of the probe (L ~), and j(x;„)=(ih/2m)[y (x;„)ply(x;„)/ax, „—y(x,„)ay'(x, „)/ax,„] is the

current operator at position x in probe i, channel n. Expressing y(x;„) in terms of eigenstates y;„(k) and using Eq. (2),
we find after some algebra

ji =«Z [~ji~j'i~nin~nm'n ~j'i, in'n(k)~/j, nnm(k)]e'
' ' '

Cj'ni(k)Cj'm'(k)
kj j' m

nr, nr, n

=eh g [/5„„,—R;; „„,(k)]C;„,(k)C;„,(k) eh—g Tj,„„,(k)C~„,(k)Cj„,(k)
k, rrr, n m kj&i m

nr, n

n +j'i m'n(.k)+ij,nni(k)e Cjm(
k,j&j' m
r0, nr', n

where R// nin(k) = l~//, nln(k) I and Tijnm =
, l&ij,nn/I are

the reflection and transmission coefficients defined as usu-

al [ l,2,4]. The phase incoherence condition between
i (bJn —b,.„,)reservoirs (e ' '"' ) =hjj. b„„„ implies that the last

term in Eq. (4) can be neglected when computing the
current expectation value j;=(j;). However, it may have

a finite contribution when computing expectation values

of objects involving more than one current operator, as
noted by Biittiker in computing shot noises [15] in meso-

scopic systems.
The constraints in currents and/or voltage differences

are imposed by adding Lagrange multiplier terms to the
Hamiltonian. In an experiment where currents passing
through the sample are fixed, the effective Hamiltonian
becomes

H„ir =H p+g7, ; (j; —J;), (5)
I

where J s are the imposed current values in probe i.
Substituting Eq. (4) into Eq. (5) and after some simple

algebra, we obtain

k)C, „,(k), (4)

t where hp; and hn; are the derivations from the corre-
sponding equilibrium values np and tup for J;—=0, and NF
is the density of states of the reservoirs. This simple rela-
tion is valid because of our assumption that Ap's are
small compared with the characteristic energies of the
reservoirs. The particle densities at diff'erent reser-

voirs are given by the usual expression [4] n;
=g/, , (Cn(k)C;, (k)&, except that the expectation value

is now taken with respect to the effective Hamiltonian
(6). Thus for a given set of values J s, we first solve the
constraint equation (j;)=J; to determine the Lagrange
multipliers A. s, then use the effective Hamiltonian (6) to
compute the densities n s, and then use Eq. (7) to deter-
mine the voltage differences h„,'s between different

probes.
We can also imagine another possible experimental sit-

uation where the chemical potentials at different reser-
voirs p s are first fixed and the resulting currents are
measured. The effective Hamiltonian now takes the form

H, ir
= g E;„(A„k)C;, (k )C;, (k ) —g A, ;J;,

k,i,n

(6a) H„/r=Hp+gp;(n; p;),

where

E;„(A,,k) =e;„(k)+ A.;[I —R;„(k)]m*
—g~jTj, „(k),

R;„(k)=JR;;„„,(k),

(6b)

(6c)

(7)

and

T/, . „(k)=g Tj, „„,(k) . (6d)
lrl

Thus our ansatz simply says that the properties of the
system under the current constraint (5) can be treated as
a system in thermal equilibrium described by the effective
Hamiltonian (6), with the Lagrange multipliers A, s

determined by the physical constraint (j;)=J;.
The chemical potentials (voltages) /t/ s at different

reservoirs can be related to the corresponding particle
densities n; through the usual relation [4],

an; =%Flu

where p; is the particle density at reservoir i which is re-
lated to the chemical potential through Eq. (7). Notice
that the effective Hamiltonian (8) is very different from
the corresponding effective Hamiltonian (6), implying
that the I-V characteristics measured in this situation

may be different from what is found in the first experi-
mental situation, even though the underlying Hamiltoni-
an of the system remains the same.

In the linear-response regime, one can replace R;„(k)
and T~; „(k) by the corresponding values on the Fermi
surface [l,4] and it is easy to show that both Eqs. (6)
and (8) reduce to Buttiker's result, J; = (e/I/) [(M;
—R;;)jt/P; —gj~; Tjhy/], where R;; =g„R;„(kF), T;,
=Q„Tj„(kF), and M; is the total number of channels in

probe i.
To understand the physics in the nonlinear regime, we

study a two-probe (left and right) system with only one
scattering channel at each probe at zero temperature.
We shall first consider the situation where the potential
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+g [s(k)+A, T(k) —p]Cp(k)Cg(k), (10)

where p is the average chemical potential which fixes the
total number of electrons in the system and k is the
Lagrange multiplier determined by the current constraint
(j)=I. To proceed further we assume that T has the res-
onant tunneling form

T(k)-
[e(k) —eo] '-+h'-'

where a ~ 1, and ep and h, are the position and width of
the resonance, respectively. Notice that the eA'ective

dispersion s(k) —XT(k) develops a minimum around
s(k)-so when ka is large enough, because of the max-
imum in T(k) at e(k) =so. Thus for some values of X (or
I) and p, one may have the seemingly very awkward situ-
ation where the left-coming electronic states k with

s(k) —so will be filled up first, whereas some states with

lower "true" energy s(k) remain unoccupied, leaving a
"gaplike" structure in the occupation number of the left-
coming states, in contrast to the previous situation where
states are filled up in order of their true energy.

The physical origin of this strange behavior can be un-

derstood in terms of our ansatz which reduces the non-

linear transport problem to the problem of minimization
of the total energy of the system with a fixed current at
zero temperature. Although states at s(k) —so have
higher energy than those states with smaller k's, they also
allow a larger current flow. Thus for a fixed amount of
current, it may be energetically more favorable to fill up
these "resonant" states first, in exchange for smaller
chemical potential diAerences between the reservoirs.

diAerence between the two probes is fixed and the current
flo~ing through is measured. In this case, we have

H,.g =g[s(k) p—r]CI (k)C((k)
I

+g[.(k) —p, ]C,(k)C„(k),
I-

and the "ground" state of the system consists of left and
right Fermi seas filled up to chemical potentials pI and

pg, respectively. The current I flowing through the sys-
tem is

I = elt g (k/m*) T(k) [nI (k) n—p(k)]
l.

f' ll
-(e/h) ' deT(e),

PR

~here we have assumed pI & pg and approximate k -kI;
in the last expression. In particular, we find dl/dV —T
gives the transmittance of the electrons from one probe
into the other, as is expected from "naive" consideration
of nonlinear transport [16].

The situation is, however, very diA'erent in the situation
when the current is fixed first. In this case, we have

H„.„=g [s(k) —~T(k) —p]C,'(k) C, (I )

It is obvious that the I-V characteristic of the system
obtained in this way will in general be different from the
one obtained in the previous situation where the chemical
potentials are fixed first because of the very diAerent way
of distributing electrons. This "nonunique I-V" behavior
can be understood more generally by considering the total
free energy F(l, hp) of the system as function of given
current I and potential diAerence hp between the two
leads. The absolute minimum of F(l,hp) occurs at
I =hp =0, i.e., equilibrium. In experiment where hp 's

fixed, I is determined by the minimum in F(l,hp) with

fixed hp, and vice versa. The difference in the I-V
characteristic for the two experiments is a consequence of
the fact that the values (l,hp)~„where F(l,hp) is
minimum for a fixed hp do not coincide in general with
the values (l, hp)I where F(l,hp) is a minimum for lixed
I. The two minima coincide exactly only in the linear-
response regime. Notice that the minima in F(l, hp) for
a fixed nonzero value of I or hp are not true minima for
the free energy of the system but are saddle points in the
(l, hp) energy diagram which are minima only along the
"constrained" lines with fixed value of I or hp character-
izing the nonequilibrium system. With more probes con-
nected to the sample the consideration is similar.

ln comparing theory with experiment, it must be kept
in mind that it is not true that simply driving currents
through the sample would automatically match the "fixed
current" condition described by Eq. (6). For example, if
the electrons were allowed to relax to local equilibrium
before reaching the sample, the momentum distribution
~ould be independent of the scattering properties of the
sample and would probably follow the distribution de-
scribed by Eq. (8). It is not clear at present what are the
correct experimental conditions corresponding to the fixed
current or fixed voltage situations. Another difhculty is

that in reality the scattering potential which determines
the transmittance and reflectance of the system depends
also on the voltage diA'erences and currents in the system
[6,14]. For a noninteracting system, voltage differences
between diAerent probes introduce additional electric
fields in the sample modifying the scattering potential
[6,14]. However, if the probes are near-perfect conduc-
tors, the electric fields are essentially constrained to the
sample region and can be incorporated into our formula-
tion by considering electric-field-dependent scattering
matrices. The dependence of T's and R's on the poten-
tial differences between probes further complicates the
analysis of the I-V curves. However, the main prediction
of our theory, the nonuniqueness of the I-V characteristic,
still remains unaltered since this phenomenon originates
from the different ways of minimizing the free energy un-

der different experimental conditions and is independent
of the microscopic details of the scattering matrix.

Theoretically, it is expected that this nonuniqueness
eAect will be strongest in systems with strong fluctuations
in transmittance over a narrow energy range. To test this
effect we consider the two-probe, single-channel system
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FIG. I. dl/dV curves I'or a two-probe, resonant-tunneling
system at zero temperature for fixed pz =op —3h, . The solid
line gives the result when the voltage difference between the two
probes is first fixed and the current I measured. The dashed
line gives the opposite situation.

librium steady state [17,18]. Our thermodynamic ansatz
which describes the current-carrying sample as a dissipa-
tionless equilibrium state with minimum free energy (like
a superconductor carrying supercurrent) may be valid in

mesoscopic systems where quantum coherence is main-
tained throughout the sample, but is certainly not valid in

describing nonlinear transport in macroscopic systems
where dissipation is crucial. The main discovery of the
present paper is that a simple ansatz like the one we pro-
pose here can produce rich and unexpected features in the
behavior of nonequilibrium mesoscopic systems. The va-
lidity of our prediction depends on how reservoirs work in

reality which is largely unknown at present. Thus experi-
mental tests of the theory would provide us with informa-
tion on how reservoirs work in mesoscopic systems.

The author thanks H. Baranger, P. de Vegvar, and P.
A. Lee for helpful discussions.

with transmittance given by Eq. (11) (with a=0.5) and

compute the I-V curve numerically at zero temperature
for both the situation with fixed currents and that with

fixed voltage differences (assuming that the dependence
of T on hp is negligible). The resulting dI/dV curve as a

function of V =pt —pg for fixed pg =op —3h, is shown in

Fig. I for both situations (the solid line is for fixed volt-

age difference, the dashed line is for fixed current). The
drastic difference between the two situations is apparent.
The "double peak" structure in dl/dV for the fixed

current situation is associated with the creation of the gap
in the occupation number of left-coming states and the
closing of the gap region when voltage difference is large
enough. Notice that the two curves coincide for small

values of Ap (linear-response regime) and that the area
under the two curves is the same, reflecting the fact that
the same set of electron states is involved in the two situa-
tions. In a realistic situation more than one channel ex-
ists but qualitative behavior similar to Fig. 1 is still ex-
pected if resonant behavior similar to Eq. (11) is found

for the total transmittance T„=g„,T„„,for some channel
n into the opposite probe, and if the background conduc-
tance is small enough.

We now make a few comments on the physical mean-

ing of the ansatz proposed in this paper. The basic as-
sumption behind the ansatz is that the statistical proper-
ties of mesoscopic systems in a nonequilibrium steady
state are the same as in an equilibrium state. Notice that
nonlinearity in mesoscopic transport is a direct conse-
quence of the quantum interference effect, and thermore-
laxation of the system occurs only at the probes joining
the sample to the reservoirs, i.e., the relaxation processes
are completely nonlocal. This is in deep contrast with
nonlinear transport in macroscopic systems where the
system is out of the thermoequilibrium and dissipation
within the sample is crucial in maintaining the nonequi-
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