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The Ott-Grebogi-Yorke control method is analyzed in the case that the attractor is reconstructed from

a time series using time delay coordinates. It turns out that the control formula of Ott, Grebogi, and

Yorke should be modified in order to apply to experimental systems if time delay coordinates are used.

We reveal that the experimental surface of section map depends not only on the actual parameter but

also on the preceding one. In order to meet this dependence two modifications are introduced which lead

to a better performance of the control. To compare their control abilities they are applied to simulations

of a Duffing oscillator.

PACS numbers: 05.45.+b, 03.20.+i

In 1990 Ott, Grebogi, and Yorke (OGY) [I] proposed
a new method of controlling a chaotic dynamical system

by stabilizing one of the many unstable periodic orbits
embedded in a chaotic attractor, through only small

time-dependent perturbations in some accessible system

parameter. This makes OGY's approach quite different
from other previously published methods on controlling
chaos [2].

OGY's method has attracted the attention of many

physicists interested in applications of nonlinear dynam-
ics. One reason for this is that OGY stress that all values

needed to achieve control can be obtained from an experi-
mental signal starting with the well-known embedding
technique [3,4]. Therefore the control method can in

principle be applied to experimental systems where the
dynamical equations are not known. Indeed, Ditto,
Rauseo, and Spano demonstrated recently [5] a first con-
trol of a physical system using the method of Ott, Grebo-

gi, and Yorke.
With regard to possible applications we investigate the

OGY control method in the case that the attractor is

reconstructed from a time series using time delay coordi-
nates. It turns out that the control formula of OGY
should be modified in order to apply to experimental sys-
tems if time delay coordinates are used. The main argu-
ment will be that during the control process one switches
the control parameter p from p;-~ to p; at times t; (t; is

the time of the ith piercing of the surface of section by
the trajectory). But, if one uses delay coordinates, the
experimental surface of section map P does not only de-

pend on the new actual parameter p; (as OGY implicitly
assume) but also on the old one p;-~. In order to meet
this dependence two modifications of the control algo-
rithm are proposed. Their control abilities are compared
with the original OGY formula by applying them to a

time series obtained from simulations of a DuSng oscilla-
tor.

Let us briefly recall the OGY control idea. For simpli-

city we restrict ourselves to a two-dimensional discrete
dynamical system (e.g. , the surface of section map P of a
three-dimensional continuous system). There also exist
extensions of the method to higher-dimensional dynami-
cal systems [6,7]. Let the system depend on some acces-
sible parameter p e (po —Bp „. „,pa+a'p .,„) with maxi-
mal possible perturbation 6'p,. „, (;+ / P((;,p). Let (F
=P(gF,po) denote the unstable fixed point on the attrac-
tor which one wants to stabilize. The control idea is to
monitor the system until it comes close to the desired
fixed point and then change p by a small amount such
that the next state (;+~ will fall into the stable direction
of the fixed point. To do this one uses the first-order ap-
proximation of P near (F and po,

~41+ i =&Bg;+wb'p;,

with bg; =g; —gF, bp; =p; —po, A =DIP((p', po), and

w=&P/Bp(JF, po). Writing the linearization A as A
=A.„e„f„+k.,e, f„with e„(e,) the unstable (stable)
eigendirections of A with eigenvalues A,„(X,) and f„(f,)
their contravariant basis vectors, i.e., f, e„=f„e,=0
and f, e, =f„e„=1, the condition that g;+~ falls on the
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local stable manifold of the fixed point can be formulated
as f„.6g;+~ =0, which yields the control formula [8] for
the new value of the control parameter p; =po+6p;,

6p; = —(A.„/f„w) f„6(;.

The control is only activated if the resulting change in the
parameter Bp; is less than the maximal allowed distur-
bance Bp „. „;otherwise Bp; is set to zero.

Let us now consider the case that the only information
about the system is obtained by some measurement pro-
cess which is mathematically realized by some scalar
function Z on the state space M. If Y(t) 6 M is the state
of the system at time t, the experimental time series
z(t) =Z(Y(t)) is obtained. Using time delay coordi-
nates with delay z and embedding dimension d, a d-

dimensional delay coordinate vector is formed, X(t)
=(z(r),z(r —r), . . . , z(t —(d —1)z)) F IR . The exper-
imental surface of section is obtained by the common
choice that one component of X(r) equals a constant,
e.g. , [X(t;)]~=z(t;)—=c. This procedure gives the succes-
sive points g; C lit in the surface of section and the
surface of section map g;+ ~

=P(g; ).
In what follows we focus our interest on the so ob-

tained experimental surface of section map P. For the
sake of simplicity let us assume that one wants to stabi-
lize an unstable fixed point gF of P which has been local-
ized by the well-known technique of recurrent points
[9-11]. Applying the OGY control algorithm implies
that one (instantaneously) changes at the times r; the pa-
rameter p from p; —[ to an appropriately chosen parame-
ter p; using (1). Let us now assume that the time be-

tween successive piercings of the surface of section is

bigger than the lag window, i.e., r;~~ —r; & (d —
1 )r.

The reason that one hopes to be able to control the origi-
nal system Y(I) by observing X(t) is that for appropri-
ately chosen embedding parameters d and r [4] there ex-
ists a bijective relation @ between the states X(t) and

Y(t), i.e., X(t) =@(Y(t)). The mapping @ is, however,

closely related to the dynamical equations of the system

and thus, in general, dependent on the actual value of the
control parameter p;. This will be taken into account by
writing N„,. instead of @.

Our argumentation is now as follows. The point (; at
time I; in the surface of section is related to the original
state by Y(r; ) =ep, ', (c,z (r; —r ), . . . , z (r; —(d —I ) r ) ).
Here we make use of our assumption that (d —1)r

] which assures that p; —[ is the actual value of

p during the whole time interval (r;-~, t;). The time de-

velopment of the original system from time t; to the time

t;+[ is, in case of activated control, given by p~'. +' ' with

p~ the flow map of the dynamical system depending on p.
Thus the state of the system at time t;+ ~

is obtained by

Y(t;+~) =p„'," '(Y(t;)) and the corresponding state in

the embedding space by X(t;+ ~) =@~,. (Y(r;+~)). There-

fore we obtain X(t;+~) =(@ y '." "o@ . ', )(X(t;)).
This gives our main conclusion. In the case of activated

control (i.e., switching the parameter from p; ~ to p; at
time r;) the experimental surface of section map P de-
pends not only on the new actual value p; but also on the
preceding value p; [, i.e.,

(A+ I P(4»p& —lupi ) ~

Taking this as the starting point the algorithm of OGY is

straightforwardly extended. The linearization which one
has to consider now is given by

g;+, =ah(;+vs;, +usp;,

with 3 =D~P((F,pp, pp), v=BP/8p; ~((F,pp, pp), and u
=rIP/t)p;(gF, pp, pp). Demanding f„B(;+~=0 one ob-
tains as a new control law

f„v
8p; = — f„.8(; — bp; —

( .
fu' u fI(' U

When P is not influenced by the preceding perturbation
Sp;-~, i.e., v =0, the original OGY control formula (1) is

reobtained. To see this we note that the vector ~ in the
control formula (I) is related to u and v by w =u+v.

The new control formula (2) contains one possible in-

stability. In the case that ~(f„v)/(f„u)~ ~ 1 holds the

required perturbations Bp; will, in general, grow until

they exceed the maximum allowed value 6p „. „, and the

range of control will be left. To avoid this instability
(i.e., the growing of Bp;) we propose an alternative ap-
proach. We try to find a control law for Bp; such that

6p;+[ automatically will become zero. This is done by
demanding that the system stabilizes only the next but
one step, i +2, and that Bp;+[ equals zero, i.e., by the re-

quirements f„8(;+z=0 and Bp;+ J 0.
Using the linearization twice, these requirements yield

the second modification of the control formula,

k„f„v
X.„f„.u+ f„v " ' k„f„u+f„.v

The control formulas introduced above have been ap-
plied to simulations of a Duffing oscillator [12] given by
X+dx+x+x =fcosrot. This system has been numeri-

cally integrated. As a measurement function the dis-

placement of the oscillator z(r) =x(r) is chosen. We use

a three-dimensional embedding with delay time r =T/4
with T =2m/rp. The experimental surface of section was

obtained by taking [X(t;)]~=z(t;) =const. For the lo-

calization of fixed points, the standard method described
in Refs. [9,10] is used (for details see also [13]). To ob-

tain the vectors u and v the perturbations 6p; are alter-

nately switched on and off at every piercing of the surface
of section such that Bp;=0 for i odd and 6p;=p for i
even, p small, respectively. Regarding all pairs ((;,g;+~)
with even i as one group and the pairs with odd & as
another, it is now possible to fit aSne mappings in the
neighborhood of gF to P(,pp+p, pp) using only pairs
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FIG. l. A chaotic attractor of the Duffing oscillator (d =0.2,

f=p=36, to=0.661) in the surface of section. The surface of
section was obtained by the conditions z(t;) =I, z(t;) )0, and
z(t; —r ) (0. The three unstable fixed points observed are indi-
cated by the crosses. For further reference they are called (Fi,
(Fz, and (F3.

(g...(„,+i), r; odd, and to P(,po, po+p) using only pairs
(g„,,(,, +i), r; even, respectively. These fits then deter-
mine u and v by the relations P((F,po+p, po)=-gF+vP
and P((F,po, po+p) —=(F+uP.

To compare the performances of the three different
control formulas we tried to stabilize the three fixed
points (Fl, gFz, and /F3 which were determined embed-
ded in a chaotic attractor of the Duffing oscillator (see
Fig. I ). To stabilize these orbits we choose as accessible
parameter p the amplitude of the driving f and a maxi-
mal allowed perturbation Bp,„=0.5. In .Fig. 2, the three
diA'erent control formulas are successively applied to sta-
bilize /pi. Only the second modification (3) was able to
stabilize /FAN. The coefficients of the control formulas
(see Table I) explain why our first modification (2) of the
OGY algorithm did not work. The criterion for a stable
control algorithm (bzi ( I was hurt. The large absolute
value of b (2f„.v)/(f„), uindicates further that the
influence of the change of the preceding parameter p;
is relatively larger than that of the actual one p;. But this
is exactly what is neglected if one applies the original ap-
proach of OGY without considering the meaning of the
time delay coordinates.

The stabilization of the second fixed point shows dif-
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FIG. 2. (a) The first component (g;)i of the points in the
surface of section vs i In. order to stabilize the fixed points (ri
the OGY control formula (I) was switched on from i = I to 200,
the first modification (2) from i =201 to 400, the second (3)
from i =401 to 600, and again OGY's control formula from 601
to 800. As can be seen only procedure (3) was able to stabilize

(b) The parameter perturbations bp; vs i used for control.
The maximal allowed disturbance was Bp „=0.5 and p0=36.

ferent features. Here the generic condition (f„w&0) of
the OGY formula is almost violated. Because of the re-
sulting large value of the coefficient a there were only
rare cases where the control requirement Bp; & Bp,. „was
met. But even then the control range was soon left
without succeeding in control. The coefficient b2 just
violates the stability criterion. Indeed, the used perturba-
tions Bp; increased at the beginning. But finally, prob-
ably due to nonlinear effects, the control procedure stabi-
lized and the algorithm was able to achieve control. The
second modification (3) was again able to achieve control
but with perturbations drastically smaller than the one
used for (2).

The third fixed point (F3 could be stabilized by any of
the three versions of the control formula. For /F3 the
coefficients of the control formulas are very similar (see
Table I). The coefficient bz is relatively small which indi-
cates the small influence of Bp; 1 compared to bp;. So
one can expect that all three algorithms will work.

The algorithms were also tested using further surfaces
of section. Among others we also investigated the stro-
boscopic surface of section map which was used by Ditto,
Rauseo, and Spano in [5], i.e., as time series we took

bI bz CI

16.43 228.4
164.6 —7.35
—2.46 —1.97

—12.9 38.9 2.2
1.04 —9.4 1.33
0.20 —1.79 0.18

—1.87
4.82

—1.85

TABLE I. The numerically obtained values of the co-
efficients in the control formulas for the three fixed points con-
sidered. The coe%cients are introduced implicitly by writing
the OGY control formula as bp; =af„b'(;, the first modifi-
cation (2) as bp; =bif„bg;+bzbp; i, and the second modifi-
cation (3) as bp; =cif, Jg;+czbp; —

i with

f„=f„i'iaaf„)i.
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a stroboscopic measurement x(t;), t; —t; ~
=T, and

obtained a surface of section with points g;=(x(t;),
x(t; ~-)). In this surface of section the periodic motion
corresponding to (F ~

could be stabilized by all three algo-
rithms. They were almost equivalent because bz and c2
were nearly zero (of the order of 10 ), so the other
coefficients were practically the same (a = b

~
——c

~= 2.7). The periodic motion corresponding to (Fq could
not be stabilized because the embedding in the neighbor-
hood of the fixed point was bad (not injective). The third
fixed point finally could only be stabilized using the
second modification (3).

Altogether the numerical investigations show that the
possibility of stabilizing a fixed point is not an intrinsic
property of a fixed point, as the eigenvalues A.„and k, are,
for example. The coefficients of the control formulas
differ for different surfaces of section and so do their per-
formances. %'e always observed that the performance of
the first modification (2) is superior to the one of the
original OGY formula and the second modification out-
performs the latter two. However, their performances are
similar whenever the influence of the preceding parame-
ter perturbation Bp; —

~ is small which results in a small
value of f„v. But we did observe that the OGY formula
failed and the applications of one of the modifications
could stabilize the desired fixed point. As a rule this hap-
pened when the influence of the changes of the preceding
parameter was noticeable, which resulted in a non-

negligible value of f„v.
In conclusion, we introduced two modifications of the

control formula of OGY which can lead to a better per-
formance of the control in the case that the dynamical
system is reconstructed using time delay coordinates.
Therefore these modifications extend the range of appli-
cability of the OGY control method. With these
modifications all remarkable advantages of the OGY con-
trol method are preserved; e.g. , the dynamics equation is

not required, the perturbations of the accessible parame-
ter can be very small, different periodic points can be sta-
bilized in the same parameter range for the same system,
and after having determined the control coeScients the
computational effort at every iteration is negligible which

opens the possibility of real time applications. We expect
that the OGY control method will yield important appli-
cations in the future for technical systems also.
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