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Evolving Numerical Enzymes: Accelerating Relaxation in the Frenkel-Kontorova Model
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We have investigated the finite-temperature behavior of the Frenkel-Kontorova model, and have found
it unable to reach the ground state when cooled at a finite rate, freezing instead into some metastable
configuration. The correlation length of the final state grows as the logarithm of the logarithm of the
cooling time. By adding "numerical enzymes, " or long-range Monte Carlo moves which precisely elimi-
nate certain barriers to relaxation, we can equilibrate to significantly lower temperatures. Our numeri-
cal method for developing these enzymes is motivated by Darwinian evolution.

PACS numbers: 64.70.Pf, 02.70.+d

There are three themes to this paper. The first is a
technical discussion of the finite-temperature dynamics of
the Frenkel-Kontorova (FK) model, which is the simplest
we know of that includes incommensurability and frustra-
tion in a natural way. We show that when cooled at a
finite rate, the model falls out of equilibrium and freezes
into some metastable configuration, and that the correla-
tion length diverges incredibly slowly with slower cooling.
The second is a general approach for equilibrating models
of configurational glasses and other models with slow re-
laxation time scales. We use "numerical enzymes, " or
complicated multiple-atom Monte Carlo moves fine tuned
to bypass the barriers to relaxation. The third is a practi-
cal implementation of principles of Darwinian evolution,
which we use for finding the enzymes; we discuss insight
gained from our experience about what is essential for
such a system to thrive in an ever-changing environment.

The FK model [1] has been studied by many groups
and applied to a variety of problems [2]. It consists of a
one-dimensional chain of atoms, each connected to its
nearest neighbors by springs, with an externally applied
sinusoidal potential:
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Frustration occurs when the periodicity of the applied po-
tential competes with the tendency of the springs to keep
the atoms evenly spaced. We have studied the dynamical
behavior of finite temperatures in the pinned limit [3],
where K« V, using finite chains with periodic boundary
conditions for the numerics, with the average number of
atoms per well equal to rational approximants of the
"golden mean, " (J5 —1)/2. We have investigated the
behavior on cooling from a finite temperature, where the
atoms are mobile, to zero temperature, where the chain is
frozen. No finite cooling rate is slow enough for the sys-
tem to equilibrate all the way into the ground state, but
cooling more slowly results in fewer defects.

In the ground state, atoms occupy the same wells they
would if uniformly distributed. An atom in the wrong
well causes a local compression or stretching of the chain,
which costs energy. The single-atom excitation energies
fall into a clear hierarchy, as illustrated in Fig. 1; the en-

ergy cost of e of a defect type is related to how delocal-
ized it is, or to its characteristic length scale L, and goes
as (K/V) to leading order in K/V. Arbitrary defects
may be represented as combinations of these elementary
excitations, and although the precise energy depends on
the exact location of every atom in the chain, to leading
order in K/ V it is simply the sum of the elementary exci-
tation energies. This energy spectrum may be derived by
a straightforward but tedious renormalization-group
analysis which will be discussed elsewhere; it also follows
froin the work of Vallet, Schilling, and Aubry [4].

In equilibrium at temperature T, defects of energy e
will be populated with probability e '/" /(1+e '/" ), so
"shorter" defects, with e»kT, will be essentially non-
existent at temperature T, and "longer" defects, with
e«kT, will be randomly populated. The length scale of
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FIG. 1. The elementary excitation spectrum, computed nu-

merically for a chain of 89 atoms with K/V=1/3. An s
("short" ) represents a spring connecting atoms in adjacent wells
and an I ("long" ), a spring between atoms separated by an

empty well. Each defect shown is due to one atom in the wrong
well causing a segment of L springs to span one more or one
fewer well than a corresponding segment of the ground state.
The extra energy may be considered as arising from the interac-
tion between the atom preceding the segment and the atom fol-
lowing, screened through L springs in between. The defect en-

ergy is V(K/V) to leading order in K/V; corrections due to
environment are small and are not resolvable here. (One dis-
placed atom actually causes two defects, but the energy of the
longer one is of higher order in K/ V. )
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We have stimulated this using a Metropolis Monte Carlo
algorithm, and the divergence in correlation length is
indeed extremely weak, as seen in Fig. 2. If this kind of
simulation had been the only way to study the model, we
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FIG. 2. The divergence of correlation length upon slower
cooling, using an ordinary Monte Carlo algorithm and linear
cooling schedule. The cooling rate y is given as h, kT per Monte
Carlo step; each run was started at k T= 10, so the longest run
plotted was cooled for 1.5&10 time steps. The correlation
length is the average length, measured in number of springs, of
segments whose occupation patterns (or "sl" patterns as in Fig.
1) are indistinguishable from the ground state. By adding the
15-atom enzyme shown in Fig. 3, we were able to equilibrate
rapidly to a correlation length of 54, as shown in the inset.
Each point is an average over fifty runs of 610-atom chains.
Here and throughout the paper, the unit of energy is the spring
constant K, and K/V =1/3.
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the highest-energy defect type that is significantly popu-
lated determines the shortest distance between defects
and sets the scale for any reasonable definition of correla-
tion length. Since the length of the highest-energy defect
in the chain scales as —ln(kT), the equilibrium correla-
tion length must scale as —ln(kT).

Because hopping from well to well is a thermally ac-
tivated process, the time scale for hopping is some geom-
etry-dependent constant times e, where E is the bar-
rier height (—2 V). If the time to cool from kT = 2e to
—

2 t. is shorter than the time required for the necessary
fraction of atoms to cross the barrier, the chain will end

up stuck with an overpopulation of this defect type. If
cooled at a rate y, the system will fall out of equilibrium
near temperature T if e/y —e " . The lowest tempera-
ture to which the chain can equilibrate therefore goes
asymptotically as the reciprocal of the logarithm of the
cooling time 1/y, so the correlation length at the end of a
run at rate y to zero temperature scales as

would probably not even have suspected that the limiting
behavior was an ordered ground state. The model is
glassy in the sense that diverging time scales cause the
"melt" to fall out of equilibrium at some history-
dependent temperature and get stuck in one of many pos-
sible metastable configurations, generally exhibiting no
long-range order. Like a glass, cooling a lot slower allows
equilibration to only a slightly lower temperature.

Many models exhibit time scales slow enough to make
numerical study difficult. Various groups have been able
to speed the dynamics of slow systems by adding special
large moves to Monte Carlo simulations. Widom,
Strandburg, and Swendsen [5] discovered that by adding
long-range hops and a particular three-atom move to the
normal small relaxations in simulating a two-component
system of Lennard-Jones disks, they were able to equili-
brate to tilable configurations where otherwise they got
stuck in glassy states. Swendsen and Wang found in

studying dynamical critical properties of Potts models
that they could significantly reduce the exponent for size
scaling at criticality and thus obtain good statistics for
larger systems. Their special move involved mapping the
Potts model onto a percolation model and changing an
entire percolation cluster at once, resulting in a new Potts
configuration, where each step could diA'er substantially
from the previous one [6].

We expect that some kind of "numerical enzymes" like
these may be useful in accelerating the dynamics of a
wide variety of models with slow relaxation time scales.
In the FK model, it is not difficult to figure out the ap-
propriate enzymes since we already know what all the
metastable states look like. For more complicated prob-
lems, however, it may be too difficult to figure out such
moves analytically or intuitively. We have developed a
technique that enables the computer to systematically
discover good enzymes without much guidance, and have
found that it works well in the FK model.

Our approach is similar in spirit to the genetic algo-
rithms introduced by Holland [7] during the 1970s. Most
applications have involved optimization problems in en-
gineering [81; the method has also been used for modeling
experimental data in physics [9]. The basic idea is that
the solution to a problem is discovered through evolution
of a population of some kind, in which an appropriate for-
mula for health or fitness determines each individual
member's survival and reproduction. Those that do poor-
ly die off, and are replaced most often by the offspring of
exceptionally healthy individuals. In our algorithm, we
have a population of moves: Each individual is represent-
ed by an n-dimensional vector telling how far to attempt
to move each of n atoms. We use a modified Monte
Carlo-like code in which we select one individual at ran-
dom from this finite population of discrete moves for
every update of the FK chain, keeping track of each one' s

performance in promoting equilibration. Detailed bal-
ance is preserved by multiplying the move by a random
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sign whenever it is used. This algorithm is not a Markov
process, and therefore not genuine Monte Carlo, but it is
able to discover precise and complicated enzymes that
can be used to accelerate a legitimate Monte Carlo code.

The formula for health must be based on success in

lowering the energy of the chain, but any reasonable im-
plementation of this should work fine. We have chosen to
multiply an individual's health by a factor X & 1 whenev-
er it is tried, and add an amount proportional to the ener-

gy decrease of the chain if the new configuration is ac-
cepted. The population is updated periodically, and those
that are unhealthy die off'. We maintain a population of
constant size; whenever one dies, two moves are selected
randomly with probability proportional to their health,
and a new individual is created as their vector sum or
diA'erence. One parent is occasionally zero padded so the
child can move more atoms.

We begin each run at a high temperature, with the
moves distributed randomly from 0 to 0.3 lattice spacing
in length, then let the population evolve as the FK chain
slowly cools. It quickly adjusts to an appropriate length
scale for the prevailing temperature, but with an excess of
long moves for hopping atoms between wells, as shown in

Fig. 3. Upon cooling, the thermal distribution sharpens
and the enzymes become separate, no longer just an
anomalously long tail to the ordinary thermal peak. By
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FIG. 3. As illustrated by the histograms, enzymes first devel-

op as an extension to the thermal move distribution, but thrive
and adapt as the system cools and specific moves between wells
become important. They gradually improve, moving more and
more atoms simultaneously and ever more precisely. Inset: A
plot of an entire population at low temperature with all moves
superimposed. Each of the enzymes here moves sixteen atoms,
moving one atom (plotted as number 0) a distance of 0.5949,
and moving the neighbor to the right (atom number 1 ) and to
the left (number —1), 0.1385 in the same direction, etc. The
thermal moves involve six to eight atoms each, with distances
distributed randomly up to about 8&10 '. The unit of length
here is the periodicity of the applied potential.

the time the chain is cold enough that ss defects have
equilibrated out, the population discovers that the en-
zymes must move at least three atoms at once, hopping
one atom a large distance across the barrier and relaxing
two neighbors. This is the needed move for equilibrating
out ill defects. At still colder temperatures, the enzymes
find that they need to move more and more atoms at
once. If they fail to discovery some necessary improve-
ment, they will be unable to continue equilibrating de-
fects out as the chain cools, and will become extinct, leav-

ing only thermal moves in the population.
So long as we cool slowly enough and set all the pa-

rameters to suitable values, then long-range, fine-tuned
enzymes usually develop that are capable of equilibrating
out even very-low-energy defects. The inset of Fig. 3
shows the 15-atom enzymes discovered by a run with
K/V=1/3. When we added this enzyme to a proper
Monte Carlo code, we were able to equilibrate to lower
temperature and longer correlation length in half an hour
of computer time than we could have in years or even
centuries using the unassisted algorithm. We have had
similar success with lower values of K/ V.

While this method is quite robust and not particularly
sensitive to details in the algorithm, some thought must
be given to ensure that it generally encourages survival of
the enzymes. For example, the relative scarcity of low-

energy defects means that enzymes succeed infrequently
at low temperatures; they simply cannot compete. We
eliminate this bias by dividing the population into two
classes, those that move at least one atom at least a third
of a lattice spacing and those that do not, and multiplying
the health of each individual by a normalization factor to
promote equality between the classes. Of course, no
amount of special treatment will help the enzymes if they
fail to adapt to the changing environment and become
unable to ever lower the energy of the chain.

Mutations are necessary to counter the otherwise mon-
otonic loss of diversity, so we occasionally multiply one
hop by a random number when a new individual is born.
If the mutation rate is too low, the population may col-
lapse and be taken over by a few strong moves, who can
no'longer adapt because they have only copies and multi-

ples of themselves to reproduce with. Too high a muta-
tion rate, however, randomizes the birth process and
keeps healthy traits from propagating.

Various input parameters need to be reasonable, al-
though fine tuning is unnecessary. The death rate must
be fast enough for the population to adapt to the chang-
ing environment, but not so high that good moves get
killed off along with the weak. Also, since health is deter-
mined dynamically, it is important to allow sufhcient time
between deaths to give newborns a chance to prove their
worth.

The rate at which successful moves can be created
determines how fast the environment may change without
devastating the population. By intelligently biasing the
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reproduction scheme to reduce the birth rate of moves
that are likely to be poor, we can save on computer time.
For the FK model, we know that the off'spring of two en-
zymes is almost always a failure, so we have explicitly re-
quired enzymes to mate only with thermal moves. For
other models, guidance of a diA'erent kind might be given.

In conclusion, we have found that diverging relaxation
time scales prevent the FK model from equilibrating all
the way to its zero-temperature ground state given a
finite cooling rate, and that much slower cooling results in

equilibration to only slightly lower temperature. We have
developed a method for accelerating relaxation in such a
system in order to study the equilibrium behavior numeri-
cally. To do this, we use a modified Monte Carlo-like al-
gorithm in which we keep track of the success of various
moves, retaining and refining those that are especially
useful for reducing the energy of the chain. We use the
enzymes, or precisely coordinated motion of many atoms
at once, that are discovered by the modified program to
dramatically accelerate equilibration in a legitimate
Monte Carlo code. The method should be especially use-
ful in studying complicated models where the ground
states and equilibrium properties cannot be deduced
analytically.
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