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Electron-Hose Instability in the Ion-Focused Regime
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A relativistic electron beam propagating through an unmagnetized, underdense plasma exhibits a
transverse instability due to the coupling of the beam centroid to plasma electrons at the "ion-channel"
edge. The transverse wake field corresponding to this "electron-hose" eff'ect is calculated in the
"frozen-field" approximation for a low-current, cylindrical beam in a radially infinite plasma. The
asymptotic growth of beam-centroid oscillations is computed, and the growth length is found to be very
rapid, indeed much less than the betatron period of the beam. Results for a radially finite plasma and
for a slab beam are noted. Damping and saturation mechanisms are discussed.
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In recent years, the demands of the TeV-energy elec-
tron-positron collider [1] have spurred considerable in-

terest in the transport of intense relativistic electron
beams in the "ion-focused regime" (IFR). Proposed ap-
plications include the plasma lens [2], the continuous
plasma focus [3,4], the plasma emittance damper [5], and
plasma wake-field acceleration [6,7]. At the same time,
coherent radiation from intense beams in the IFR has
also been the subject of much theoretical [8-11] and ex-
perimental [12] work. These novel applications draw on
a large body of work in beam-plasma physics [13-15]
and extensive application of the IFR in accelerator and
radiation research [16,17].

Typically the IFR refers to propagation along a narrow
plasma channel which is "underdense" (i.e., with charge
density much less than that of the beam) and in addition
has total plasma charge per unit length less than that of
the beam. In this limit, all plasma electrons are ejected
radially to large distances. However, for many novel ap-
plications, the plasma may initially extend to large radii,
or a broad plasma may be created by beam and secon-
dary ionization. In this Letter, we show that propagation
in such a regime suA'ers from a previously unrecognized
hose instability, similar in character to the "transverse
two-stream" instabilities [18,19] (e.g. , the "ion-hose" in-

stability [15]). This instability results from the electro-
static coupling of transverse beam displacements to plas-
ma electrons at the boundary between the ion channel
and the surrounding quasineutral plasma, beyond the
beam volume. We show that the growth length for the
"electron-hose" instability is so short that IFR transport
in this regime is problematic at best.

To compute this growth length, we consider first equi-
librium propagation of a relativistic electron beam in a
uniform, unmagnetized, preionized plasma of density n„
and infinite radial extent. We assume unperturbed beam
charge density of the form pbo(r, s) = enb(s)H(a r), — —
where H is the step function, —e is the electron charge,

nb is the beam density on axis, a is the beam radius (Fig.
1), s =t —z/c is the retarded time, t is time, z is axial dis-
placement, and c is the speed of light. As the beam head
propagates through the plasma, it expels plasma electrons
from the beam volume on the short time scale of an elec-
tron plasma period co, ' « r„, where co, =(4nn, e /m) 't,
m is the electron mass, and z, is the current rise time.
When the plasma is underdense (n, & nb) all plasma
electrons are adiabatically expelled from a cylindrical
volume of radius b =a(nb/n, ) ' ) a. The resulting pure
ion channel persists for a time of order co; ', where
co; =(4 nt,re /m;) 't is the ion plasma frequency and m; is
the ion mass. We assume z «co; ', where z is the pulse
length, so that ion motion can be neglected.

The beam will be strongly focused (ion pinch force
dominating over self-fields) if the Budker condition [13],
n, »nb/y, is satisfied, where y is the Lorentz factor for
the beam. In this limit, all beam electrons undergo trans-
verse oscillations at a single well-defined "betatron fre-

. l ion chan

-'
I beam I

':+

l plasma [

FIG. l. In equilibrium, a relativistic electron beam of radius
a propagates through a channel of unneutralized ions. Plasma
electrons have been expelled beyond a radius b.
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where y~ =p~ —A, ~, p, ~ is the perturbed plasma-electron
charge density, and the transverse gradient is V&. We
change variables from (z, t) to (z,s) and simplify Eq. (1)
with the "frozen-field" approximation, in which the
d'Alembertian operators are approximated by V& and ra-
diative eAects are neglected. This approximation in eA'ect

neglects terms of the order rp, b/cy «1.
The perturbed plasma-electron charge density p, ] is

determined from the potentials through the electron

FIG. 2. A beam slice in the ion channel, displaced by an
amount ( in the x direction, induces a displacement q of the
channel wall, which responds as a simple harmonic oscillator
with angular frequency mo, deAecting follow-on portions of the
beam.

quency" cop=co, /(2y) 'i . The primary motivation for us-

ing the IFR for beam transport is that co~ is much larger
than that achievable with conventional magnets.

We will assume that the collisionless plasma skin depth
c/ro, is much larger than the channel radius, so that
ru, b/c =2v'i «1, where v=1/Ip is Budker's parameter,
Ip =mc /e —17 kA, and I is the beam current. Since col-
lisionless plasmas characteristically neutralize magnetic
fields on the scale of a skin depth, it is appropriate in this
limit to neglect the axial plasma-electron current. In this
case, the equilibrium plasma-electron charge density is

p, p
= —en, H(r —b)

We consider next the eA'ect of a hoselike perturbation
which displaces the beam centroid (Fig. 2) by a small
amount g(z, s) in the x direction. For a pinched-beam
equilibrium in which all beam electrons oscillate at the
same betatron frequency, it is appropriate to use the
"rigid-beam" model [20-23]. The perturbation to the
beam charge density is then pb~

= —enb(6(a —r)cos8,
where 0 is the azimuthal angle in the x-y plane.

The. perturbed scalar and axial-vector potentials,
and A, ~, for a displacement g are calculated from Max-
well's equations in the Lorentz gauge,

cold-fluid equations.
r)pe i +V~. (p, pV, i) =0,

S
(2)

r)&e i

Bs m
(3)

where V, ] is the plasma-electron velocity. Inspection of
Eqs. (2) and (3) shows that p, &

consists entirely of a
surface-charge layer at r=b, and may be expressed as
p, ~

=en, rib(r b)cos—8. This perturbation may be
thought of as a hoselike rippling of the inner surface of
the electron fluid, where tl represents the hose displace-
ment.

In terms of tl and (, the potentials from Eq. (1) are

a —r
A, ~

= —2rrnbeg cos8' H(r —a) + r ' (4)

and

b2 2

y~ =2rrn, etl cosO& H(r —b)+r '. (5)

Using Eqs. (2)-(5) we find that g responds as a simple
harmonic oscillator driven by g,

r
2 2

, +cup tI(z, s)=, rpp&(z, s) =cup&(z, s) . (6)
cis n, b

The characteristic angular frequency isIpp=rp, /2' and
diff'ers from co, because the surface at r =b is the bound-
ary between a region of electron density n, and a region
of zero density.

The Lorentz-force equation for the beam-centroid dis-
placement is

8 8 2 e
y +ykp g= =ykprl, (7)

Bz Bz mc r)x

where kp —rup/c is the betatron wave number. This ex-
pression describes the deflection of the beam by the image
polarization on the ion-channel wall.

For an infinitely long beam and beam line, perturba-
tions may be taken to vary as exp(ikz —icos), and Eqs.
(6) and (7) lead in this case to the dispersion relation

(I —k '/kp') (I —rp'/rp(~)) = 1. (8)
In terms of k'=k+rp/c, Eq. (8) may be rearranged to
yield the well-known two-stream instability dispersion re-
lation [24,25]. The result is instability for real cu & cup

or real k ( kp, with growth rates diverging as co coo

or k k~ from below. In general, such singularities re-
sult in an instability which is absolute in both the beam
and laboratory frames [24,26,27]. As in the long-pulse,
weak-beam limit of the two-stream instability (here, cor-
responding to copz» I and cop«cup), it is the resonance
at co coo which dominates.

The spatial growth length for the initial-value problem
follows immediately from Eq. (8) with the application of
well-known results from two-stream theory [26,27]. Nev-
ertheless, it is instructive to explicitly solve the problem
up to quadrature for a semi-infinite beam and beam line.
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Combining Eqs. (6) and (7) results in an equation for g
alone of the "beam breakup" (BBU) form [28],

y + ykp g(z, s)c) c)

z z

ds',' sin [cop(s —s')I ((z,s') . (9)

From Eq. (9) we may formally identify the electron-hose
"dipole wake potential" [29] as W'(s) = Wp sin(cops ),
where (I/lp)W'p=cop/c or Wp=2cop/b . This wake is
identical to that of an undamped microwave cavity with a
coupling impedance per unit length [30] of 2/copb and
resonant frequency cop. However, Eq. (9) has the unusual
property that the driving term is independent of beam
current. A smaller current results in a smaller channel
radius and a larger geometrical coupling exactly compen-
sating for the decreased current. Such an effect is not to
be found in conventional BBU.

Taking g(0, s) =H(s), the asymptotic form for the
solution of Eq. (9) is obtained by the method of steepest
descents [24,26,271,

2 I/2 ~ ]/2

g(z, s) = „, „, exp(A)

x sin [cops —3 ' '& —n/12], (10)
where the exponent is 2 =(z/Ls) t . The growth length
is

[/2
ylo
I9/43 (Ws)'" 3'" (~ )'" '

and cops »A » 1 is assumed [31]. This result shows that
I.g«k~, corresponding to the "weak focusing" limit fa-
miliar from~ conventional, microwave BBU theory [32].
However, in contrast to conventional BBU, where k~ and
8'0 may bc independently adjusted to achieve strong
focusing, no such freedom is seen in Eq. (11). This result
is remarkable in that it implies that focusing is rendered
ineffective by the electron-hose wake field [33].

The severity of this result motivates us to consider
mechanisms which might reduce electron-hose growth.
From the dispersion relation of Eq. (8) we observe that
the instability may in principle be mitigated by weaken-
ing the resonance at either ~ ~0 or k kp. From
Eq. (9) one may conclude that, since focusing is weak
(i.e., since the resonance at k kp contributes only
weakly), damping mechanisms relying on a spread in be-
tatron wave number can only be eff'ective if the spread is

very large, Akp/kp —I/kpLs ) 1. Such a large spread in

k~ is unsuitable for many applications. This class of
eff'ects includes Landau damping due to a spread in ener-

gy within a beain slice [32], energy-sweep damping [34],
and "phase-mix damping" due to nonlinear focusing,
arising from a radially nonuniform plasma [15,16].

On the other hand, several mechanisms exist for weak-
ening the electron-hose coupling at co coo. First, the
electron hose is eliminated entirely if the plasma charge
per unit length, Q„, is less than the beam charge per unit

length, Qb =I/c. In this case, all plasma electrons are
ejected to large radii, leaving an ion channel with no ex-
cess plasma. This situation is in fact fairly typical for
IFR channels produced by laser or beam ionization
[15,16]. One may well ask how much excess plasma
charge, hQ =Qp —Qb, is tolerable and to answer this
question, we have repeated the calculation of Eqs.
(1)-(11) for a bounded plasma. Assuming the plasma
extends initially from r=0 to r=b+6', we find that the
condition Ls & kp requires ci & b/co, s, corresponding to a
charge excess of hQ/Q~ & 1/co, s. Thus very little excess
plasma charge per unit beyond the value Qt, is tolerable.

One also expects the resonance at mo to be altered, and
growth reduced, by plasma-electron collisions with ions
and neutrals. Assuming a phenomenological collision
rate v, in Eq. (3), we have found that the peak in growth
occurs at v, s =22/3, convecting backward along the
beam. This maxiinum varies as g ~exp(z/Ls), with [35]
Lg —0.2Ap(v, /co, )'t . This growth length is somewhat
longer than that of Eq. (11), but still short compared to
A,p.

Growth could also be reduced by varying the resonant
frequency of plasma oscillations, through the external
geometry. For example, if we add a conducting pipe of
radius R, we find a resonant frequency cop —cop(1
+b2/2R2), so that the dipole g oscillates at a slightly
higher frequency which depends on R. Thus a variation
of the pipe radius on the scale of a growth length could in

principle produce an eff'ect analogous to "stagger tuning"
[32]. However, such a variation in R would be quite rap-
id. Alternatively, an axial variation in plasma density, as
in the continuous plasma focus [3,4], may produce
phase-mix damping. In this case, the plasma density
would have to vary appreciably over a length Ls & Xp.

In addition, growth will be reduced somewhat by the
plasma return current, neglected in the approximation
co,b/c«1. In the low-current limit we have considered,
the electron hose is reminiscent of the "image-displace-
ment" [36]. If a conducting boundary or a sufficiently
dense plasma were nearby, it would carry a dipole image
current, and the combined Lorentz force on the beam due
to the image fields would be a factor of 1/y less than for
the electric-field term alone. On the other hand, to
achieve even co,b/c —2 requires I—Ip, a current larger
than is envisioned for typical applications.

Ultimately, plasma electrons will be heated as a result
of hosing and the cold-fluid model of Eqs. (2) and (3)
will lose its validity. Computation of the asymptotic form
for g reveals that the hose oscillation amplitude is in gen-
eral much larger than that for the beam,
ri —(cops/2 )g ))g. In this case, one expects saturation
when g —b, corresponding to a significant electron tem-
perature —mc v, and a beam-centroid amplitude of or-
der (—b/cops Numerical st. udies are in progress to
rigorously examine the approach to saturation.

For TeV collider applications "flat" beams are also of
great interest and we observe that in this case there arises
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a Autelike analog of the electron hose. We find that the
minimum growth length for this Bute instability is

L~ —0.2k'/(co, s) '/, which is just the scaling of Eq. (11).
Thus, for the Oat beam the situation appears little im-
proved.

In conclusion, we have presented a simple analytical
theory describing a rapidly growing cumulative instability
in a relativistic beam-plasma system. Further analytic
work and numerical simulation are in progress to assess
damping and saturation mechanisms, as well as plasma
heating, bunching, and radiative eff'ects.
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