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Inhibition of Spontaneous Emission Noise in Lasers without Inversion
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I demonstrate a very large degree of quenching of spontaneous emission noise in diferent laser sys-
tems that work on mechanisms other than the population inversion between the bare states of the atom.
Such laser systems have much narrower linewidths. I give explicit results for phase diA'usion for four
diA'erent model systems.

PACS numbers: 42.55.Bi, 42.50.Kb

Recently several model systems have been studied from
the point of view of laser action without population inver-
sion [1-7]. One has examined the dependence of the gain
on various system parameters. So far very little has been
done on the quantum features of such laser systems. A
question that is of prime concern with all the laser sys-
tems is the linewidth. In this Letter I show that lasers
without inversion have very considerable quenching of the
spontaneous emission noise, resulting in much narrower
linewidths as compared with the linewidths of convention-
al lasers. I demonstrate this explicitly for four diA'erent

model systems. In each case I give, without proof, quan
titative results for the noise quenching.

The Schawlow-Townes formula for the laser linewidth
depends on two parameters: (i) the mean number n of
photons at the operating point and (ii) the spontaneous
emission by the atoms at the operating frequency of the
laser. For a single-mode laser the diA'usion coe%cient of
the phase can be expressed as

D~ =S/4n,

where S gives the rate of increase of the mean number of
photons due to spontaneous emission, i.e.,

d (a a) =S(a a+1)+other terms.

ing occurs if the parameter S is less than that for a stan-
dard laser.

A system with coherent pumping Let.—us first consid-
er the system of Imamoglu, Field, and Harris [7] as
shown schematically in Fig. 1(a). The laser transition is

c-( g -y (u -&Z) 2 2

(b)

The quantity 5 can be related to the two-time correlation
function of the atomic variables. If we write the interac-
tion Hamiltonian between the laser mode and the atoms
as

H, =gA a+H.c. ,

where 2 denotes the atomic dipole moment operator for
the laser transition and g is the coupling constant, then
one can show that

(c)
~c =~o'2G

Ia

—&& (t+r))(&(t))le '"'dr+c. c. (4)

Here % is the number of atoms taking part in the laser
action. The two-time correlation function in (4) will de-
pend on the excitation scheme used for the laser action.
Thus for a given operating point, i.e., for a given number
of laser photons, the linewidth essentially is determined
by the parameter S. Thus we will say that noise quench-

FIG. 1. Schematic illustration of the various pumping and
energy-level schemes used for laser action without population
inversion.
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1) 3) and a coherent field is applied on the transition
1) 2). This coherent field (Rabi frequency 2G) can

lead to laser action on the transition I 1) I3) even if the
total excited-state population is less than the ground-state
population, when all fields are on resonance and when the
field on the

I
1) I2) transition is large. The condition of

gain is

where y~o is the decay due to the spontaneous emission
alone. We next discuss the spontaneous emission noise.
The phase diA'usion D or the quantum noise in the present
laser model is determined by the spectrum of the spon-
taneously emitted photons on the transition

I 1) I2).
The spectrum S(co) is to be calculated from the density-
matrix equations for this three-level system in the ab-
sence of the probe field and the quantum regression
theorem. In terms of the two-time correlation the spec-
trum [8] is

S(co) =Nlgl'Re dz e ' " "" '
lim (2~3(t+z)A3~(t)),4 0 oo

(6)

where

w.,(t) = la&(pl .

Our calculations show that

[i (co —co ~ 3) +A+ y2] 2A
I G I

'
S co

[[t'(co —coq3)+A] [i (co —co~q)+A+ yq+ y2]+ IGI ] [IGI (2yq+2A)+2A[yq(yq+ y2)+ IGI ]]

(7)

(8)

So=Ag N/(A+y))(y)+2A) .

Thus the ratio of the diAusion coefficient is

S/So= (A+ y2)(A+ yi)/IGI «1.

(10)

The last result follows since Eq. (9) was derived under
the condition that the Rabi frequency of the coherent
field is much bigger than the pumping and spontaneous
emission rates. The result (11) shows that the A system-
model for lasers without inversion has considerable
quenching of spontaneous emission noise

Quenching of noise in the system based on gain on the
th~ee-photon Mollow sideband. —Let us next consider
the laser system [Fig. 1(b)] which works because of gain
on the left Mollow sideband [6] even though there is no
population inversion between the two bare states of the
atom. The details of this model can be found elsewhere
[5]. Here the two-level transition frequency coo is
pumped coherently by a field of frequency col and the
strength is given by the Rabi frequency 26. It is known
that under appropriate conditions one can have gain in
the frequency region cot —[(cot —coo) +4G ] 't . The
phase diAusion in this region is determined by the spec-
trum of spontaneous emission which in turn depends on

IGI and ~ =coo
In Ref. [5] it was shown that this laser system is

equivalent to the standard single-mode laser model pro-

Thus for the case of the cavity mode on resonance, co

co/ 3 and for large Rabi frequency I G I, the parameter S
(i.e., the diffusion coefficient) becomes

S =Ng'(A+ y&)A/I G
I
'(y~+2A) .

On the other hand, the diffusion coefficient or 50 for the
standard two-level laser model is obtained from (8) by
1«ting y2-0, IGI-0,

vided we make all relaxation times and coupling con-
stants field dependent and provided that we work in the
dressed state basis. Calculations show that the ratio of
the diff'usion coefficient for the present model to that for
the standard laser model is

4 A (A2+4G 2) 1/2

p = (12)
~0 1+p +4p

In writing the ratio (12) we have assumed that the inver-
sion in the usual laser model is the same as the inversion
in the dressed state basis for the present model. This has
been done so that the noise is compared under identical
pumping conditions. By using diferent values of A and
G one can see that S/So could be much smaller than I.
For example, S/So= 1/6, I/10, and 1/20 for 6=0, G/2,
and 6, respectively.

Inhibition of spontaneous noise in a model based on
the pumping of one of the dressed states We next con. —-

sider a laser model [4] [Fig. 1(c)] in which the atoms are
prepared in one of the dressed states, say ly+) before
entering the cavity. The external field is on resonance
with the bare atomic transition. The state I y+) is defined
to be the eigenstate of the resonant Hamiltonian with
eigenvalue 6.' In such a case one has gain in the frequen-
cy region col+26. This gain can be used for laser action.
The diff'usion coefficient depends on the spectrum of spon-
taneous emission in the frequency range co~+26. The ex-
act form of the spectrum will depend on the decay rates
of the bare states

I
1) and I2& of the atom. Let A be the

rate at which atoms in the state
I y+) are brought into the

cavity and let y be the rate at which the excited state
I
1)

decays to some other state in the system. When the
external field is on resonance with mo and the cavity mode
on resonance with mI+26, then the coefficient S is found



VOLUME 67, NUMBER 8 PH YSICAL REVIEW LETTERS 19 AUGUST 1991

to be

s =AIGI'/y'.

The diA'usion coe%cient for the standard laser model un-

der similar pumping and decay conditions is

S.=4AIg I'/y',

and hence

S/So =1/4.

(i4)

The diffusion coefficient is a quarter of its value for a nor-
mal laser system. Thus the present model also exhibits
quantum noI se quenching.

Noise quenching in the system based on the pumping
of the autoionizing states We.—finally consider the sys-
tem [Fig. 1(d)] working on the pumping of the autoioniz-
ing states. The spontaneous emission spectrum is deter-
mined by the two-time correlation function [9] (A;t(t
+ r )A;(t)), where A; is the atomic operator

Thus the ratio S/So in the limit of small q becomes

So (r+y)'q' q'r r ' (2O)

since the small-q limit can be thought of as due to large
I . Note that y/q I is nothing but the probability of ra
diative recombination [11], (2rv rr/3hc )IV;~I, and thus

y/q I & 1. We then get S/So«1, i.e., the laser system
working due to the pumping of the autoionizing state also
leads to a large amount of quenching of spontaneous
emission noise.

In conclusion, we have shown, by considering various
models of lasers without inversion, that the spontaneous
emission noise is considerably quenched in all such sys-
tems. Clearly lasers without inversion will have much
narrower linewidths.

The author is grateful to the Department of Science
and Technology, Government of India for supporting this
work.

with

dE Ii)(EIBE, ,

2(E —E.)
BE =bE 1+

Iq

r =2~I v~. I', q'=
I v;. I'/~'I v;E I'I vE. I' (i7)

This correlation function is to be calculated in the pres-
ence of the pumping of the autoionizing state Ia). The
pumping can be included as in Ref. [2]. For the cavity
mode on resonance with the transition Ia) Ii), we find

that the parameter 5 is given by
2

S=g A 1+ 1

q 2z

(i8)
4 IV„I cv E, —E;M=-

c 'h.

The interference in the Fano system is known to be most
prominent in the limit q 0, whereas in the limit q
Fano line shapes go over to symmetric profiles. Assuming
that the large-q limit is equivalent to a closing of the au-
toionization channel, then

S So=2g A/xy. (i9)

r/2~
(r/2) '+ (E E.)'—

The asymmetry parameter q and the autoionization rate
I are defined by [10]
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