
VOLUME 67, NUMBER 8 PH YSICAL REVIEW LETTERS

Level Crossings, Adiabatic Approximation, and Beyond
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We present an analysis of the phenomena occurring whenever a level crossing is encountered. Besides
Landau-Zener transitions and the quantum nonintegrable phase, fractionalization of quantum numbers
and chaotic behavior emerge as intrinsically intertwined phenomena.
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In the analysis of essentially any complex system one
identifies one way or another the slow and fast degrees of
freedom and the subsequent discourse continues using
these concepts. However, problems arising from the oc-
currence of so-called level crossings are not yet under-
stood and solved in a satisfactory manner. Hill and
Wheeler [1] gave a rather detailed discussion of the
eff'ects which might occur if a level crossing is encoun-
tered during the time evolution of the slow (collective)
variables. Near such a configuration one often describes
the behavior in terms of the well-known Landau-Zener
transition. However, not so long ago another phenome-
non, the so-called molecular Aharonov-Bohm effect [2] or
Berry's nonintegrable quantum phase [3], was put in evi-
dence. It is peculiar that two such remarkable phenome-
na occur under similar circumstances. More attention
should be paid to level crossings than usually is done; at
least one reason is that they are encountered very often
[1,4-6]. Dissipation and the ever elusive quantum chaos
are likely to be manifested due to the existence of real or
avoided level crossings. On the other hand, the standard
theory of (large amplitude) collective motion [7] never
explicitly treats these phenomena, even though micro-
scopically computed quantities (inertial parameters, po-
tential energy) are rapidly varying or singular in the vi-

cinity of avoided or real level crossings. We analyze in

this paper a very simple model, which, in spite of its sim-

plicity, embodies the essential physics of the phenomena
taking place at or near a level crossing.

Let us assume that there are three slow degrees of free-
dom Q, P, whose motion is governed by the Hamiltonian

P +Mco Q (1)
2M 2

with a large mass and small angular frequency. Most of
the time we will treat the slow variables as classical; how-
ever, this approximation can be easily improved to either
the semiclassical level or even the quantum level if neces-
sary. On the other side, the fast degrees of freedom will

be treated in a reduced two-dimensional Hilbert space by
the Hamiltonian

h = —,
' tcQ. e, (2)

where K is a coupling constant and a are the usual Pauli
matrices. This particular form of the Hamiltonian(s) will

not restrict the generality of our conclusions. The stan-
dard approach is the Born-Oppenheimer approximation.
Let us assume that the slow degrees of freedom evolve as

Q (t ) =Qo(sin (cot ),0,cos (cot ) ) . (3)
We have chosen this particular form for two reasons: (i)
one can solve exactly the time-dependent Schrodinger
equation [8,9] and (ii) in this case Berry's gauge poten-
tial is identically zero, even though the quantum nonin-
tegrable phase is nonvanishing. Formally, the quantum
problem is identical to the motion of a spin —, in a uni-

formly rotating magnetic field in the x-z plane. We shall
represent the quantum state by the density matrix p,

1 +z x —lg

x+lg 1 —z (4)

where r=(x,y, z) =Tr(per) is real, with r =x +y +z
~ 1 (equality for the case of a pure state only, p =p).
Assuming that initially z =1 and constructing the solu-
tion of the time-dependent equation ip = [h,p] as a power
series in t, one readily obtains that

x(t) =
6 cot, y(t) = —

2 cot, z(t) =1 —
—,
' co't4, (5)

if ago =1 (this amounts only to a redefinition of the time
scale), which should be compared with the standard
Born-Oppenheimer approximation,

[h,p] =0 r(t) =(sin(cot), 0,cos(cot)),

x(t) =cot, y(t)—=0, z(t) =1 ——, co't'. (6)
The difference between Eqs. (5) and (6) is at least unex-
pected. Instead of following the driving field, the quan-
tum state lags behind, and moreover it moves in the Hil-
bert space at first into an unexpected direction (y). The
exact solution is in this case

x(t) =sin(cot)+ ~ — sin(cot)—CO CO

0 20

y (t ) = [cos(n t ) —1],
A

sin(n+ co)t sin(n co)t-+
A+M fL —N

(7a)

(7b)

z (t ) =cos(cot ) + ~—M
cos(cot )— N

A 2Q
cos(n + co)t cos( n —co)t

0+co Q —M
(7c)
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where 0 =1+m . One can characterize the motion of r
as precession (with frequency co) plus nutation (with fre-
quency 0 ). One would expect that the adiabatic time-
dependent Hartree-Fock (ATDHF) theory [7] shall ap-
ply if m(( I (the splitting between the two levels in these
units is exactly 1 for co 0). In Ref. [7] it was shown
that one can define collective coordinates and momenta
by introducing the following representation of the density
matrix: p =exp(ig)poexp( —ig), where both po (general-
ized coordinate) and g (generalized momentum) are Her-
mitian and time even. In the present case [r =1, ro =(x

2) 1/2]

+z
arcsin (y)

x f'o z '
2go

I'o

go=
2To ~

z —x

Even though the collective velocity is small when m«1,
its frequency is of order 0 [the collective velocity is pro-
portional to y(t)]. Similarly, the collective coordinate po
has high-frequency components beyond the zeroth order
in ro. Also, as one can see from Eqs. (7) and (8), a
straightforward expansion in co is meaningless (one can-
not simply retain terms of up to order co ), since the slow
and fast modes are intertwined in a nontrivial way. In
studying the collective motion, one is interested in situa-
tions where cot —1, which enters in a rather complicated
way into the arguments of the trigonometric functions.
In the ATDHF theory there is, however, a rather subtle
prescription on how to pick the "collective path" [7]. In-
stead of the equation [h,po] =0, one should solve a slight-
ly modified one (cranked Hartree-Fock). [We tacitly as-
sume that such a procedure was already used to "derive"
the collective Hamiltonian in Eq. (1). Consequently, our
disucssion applies, in particular, to the interaction be-
tween the ground state and one excited band or two excit-
ed bands near a funnel [I] or a diabolical point [3].] In
the present case this amounts to going to the rotating
frame, i.e., [h —co/2o~, po] =0. For such a choice of the
collective path the amplitude of "nutation" is vanishing
and the "spin" is enslaved by the "magnetic field, " but is

slightly out of the x-z plane (see the similar case treated
in Ref. [9]).

The above solution deserves a lengthier analysis. We
shall only mention that the Landau-Zener effect comes
from the solution of a similar problem with the only
difI'erence being that one considers one slow coordinate
and one pass near the level crossing, which will corre-
spond to such situations as fission and dissociation. Our
analysis is characteristic of bound collective motion in-
stead. We shall now proceed to the analysis of the full
system, i.e., coupled slow and fast degrees of freedom.
For the sake of simplicity of the analysis, we shall assume
that the motion of our system is governed by the Hamil-
tonian

0=-'(P'+Q')+ -'Q ~

Q=P,
P= —Q ——'r
r=Qxr.

(1 la)

(1 lb)

(I lc)

In this form they can be thought of as fully quantum, if
Eqs. (1 la) and (1 lb) are interpreted as Heisenberg equa-
tions of motion for the corresponding operators (Eq.
(1 lc) is already the Schrodinger equation ip = [h,p] in a
disguised form). One can safely say that the above equa-
tions describe the "correct" time behavior of an arbitrary
quantum system near a level crossing. It is easy to estab-
lish the existence of the following integrals of motion:

( 2+ 2+ 2) I/2

E=-,' (Q'+P')+-,'
Q r,

J =QxP+ —,
' r.

(12)

(13)

(14)

In the case of a pure state for the fast variables, r = 1 and
the first integral of motion simply expresses the conserva-
tion of the norm of the wave function. The second in-

tegral of motion is nothing else but the total energy of the
system. The last integral of motion has a most unusual
structure. It looks like the angular momentum for the
slow degrees of freedom, except for the last term. If the
slow motion is quantized J is half integer. (If the fast
modes are in a mixed state, then r & 1 and consequently J
becomes fractional and real. ) 1 also has the right com-
mutation relations expected from a total angular momen-
tum operator. In the space (x,y, z) (or pk/ in other
words) there is a well defined symplectic structure [10],
the Poisson brackets are defined [10-13],and r/2 behaves
like an angular momentum quantity. Upon quantizing
the slow variables one obviously obtains the right commu-
tation relations for the "orbital" part of J, while for r/2

Constants like the inertial parameters of the slow vari-
ables, co, K, can be absorbed easily into Q, P, and t
through an appropriate redefinition of the units and
canonical transformations. The fact that the coupling

Q o' vanishes at the same point where the potential Q /2
is centered can be easily modified, as well as the form of
the coupling and/or of the potential, without essentially
modifying our subsequent discussion. If one treats the
slow variables as classical, the equations of motion for
this system can be derived from the following Lagrangian
[lo]:

p Q+ z(xy —yx)
2( 2+ 2) ( 2+ 2+ 2) 1/2

—[-,' (P'+Q')+ —,
' Q. rl. (lo)

Here one can see the appearance of the "eA'ective gauge
field of a Dirac monopole" [10,11],which, when integrat-
ed over a closed loop, is the exact quantum nonintegrable
phase [2,3], which modifies the Bohr-Sommerfeld quanti-
zation rules [9-12]. The equations of motion are
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one has to retain the "classical" commutation relations.
However, one can (re)introduce the usual Pauli matrices
instead of r as well.

These equations of motion display some unusual
discrete symmetries. Time-reversal invariance can be
defined in several ways:

(Q,P,r)- ( —Q, P, —r),
(Q1,Q2 3,PI,P2 3,X,y, Z)

( —Ql, Q2, 3,P, —P2, 3,
—X,y, z),

(IS)

(i6)

up to obvious permutations in Eq. (16). Parity invariance
also can be defined in several ways:

(Q,P, r) (Q, P,r),
(Ql Q2, 3 Pl, P2 3,X,J,Z)

(Ql Q2, 3,Pl, P2, 3 X y Z)

(i7)

with again obvious permutations in Eq. (18). It seems
that the enumerated cases exhaust all possible situations.

A standard adiabatic solution of Eqs. (11) has as a
conserved quantity only the orbital part of the angular
momentum. This leads to the fact that the collective tra-
jectory is planar. In the exact solution, the trajectory is
no longer confined to a plane and can become chaotic.
Chaoticity was observed in triatomic molecules, which
are described by similar equations of motion, with the
only distinction that there are only two slow degrees of
freedom [14]. If one describes a situation where the col-
lective trajectory never comes close to the level crossing,
then Q dominates over r/2 in Eq. (I lb) and the orbital
angular momentum is approximately equal to the total
angular momentum. However, whenever a trajectory has
a low impact parameter with respect to the level crossing,
the orbital angular momentum can be comparable in

magnitude with r/2 and the trajectory becomes essential-
ly chaotic. The normal to the instantaneous trajectory
plane can be anywhere in a solid angle tr[2J —(4J
—1) 'l ]/J, if J~ —, , r =1, centered around J.

Negele [15], in his imaginary-time-dependent Har-
tree-Fock analysis of the fission of 8 into two ' 0 nu-
clei, displays a collective path in the quadrupole-octupole
space, which has exactly the type of characteristics one
should expect, in the light of the present discussion, from
the presence of a level crossing. To understand Negele's
result one probably needs two collective degrees of free-
dom only. This will amount to replacing the vector J
with its "third" component, if the Hamiltonian for the

slow variables conserves the orbital angular momentum.
In the absence of such a symmetry one still has to consid-
er an equation of the type (1 lb) for the slow momenta,
where the presence of "fast coordinates" will modify in
an essential way the dynamics. As far as we are aware,
this calculation is the only one available in the nuclear
literature where the fast degrees of freedom were treated
without any constraints and as a result the presence of
the level crossing manifested itself in such a striking way.

We find it remarkable that so many features, namely,
the Landau-Zener transitions, fractionalization of quan-
tum numbers, occurrence of dynamically generated gauge
fields (eA'ective Dirac monopoles), and chaotic behavior,
emerge in the framework of this approach. Even though
most of the time we refer directly to nuclear dynamics, it
should be obvious that our discussion covers a larger
range of physical situations.
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