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Nucleon self-energies in nuclear matter are studied by analyzing the correlator of nucleon interpolat-
ing fields using QCD sum-rule methods. Large Lorentz scalar and vector self-energies arise naturally,
and are comparable to the optical potentials of Dirac phenomenology. The key phenomenological inputs
are the baryon density and the value of the nucleon a term.
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In the Dirac phenomenology of proton-nucleus scatter-
ing, nucleon propagation is described by a Dirac equation
with an optical potential featuring large (several hundred
MeV) Lorentz scalar and vector components [1]. This
phenomenology provides a simple yet quantitatively accu-
rate model of spin observables over a wide range of ener-
gies and target nuclei [1]. However, the connection of
this phenomenology to quantum chromodynamics (QCD)
has not been established, and the possibility of such a
connection has been overshadowed by concerns that the
Dirac equation should not be used to describe composite
nucleons. In this Letter, we show how large scalar and
vector self-energies arise naturally in finite-density QCD
due to changes in the scalar quark condensate and the
quark density. We use QCD sum-rule techniques to cal-
culate the self-energies of intermediate-energy nucleons
in nuclear matter and find them to be comparable to the
Dirac optical potentials.

We consider a correlation function of interpolating
fields, built from quark fields, that carry the quantum
numbers of the nucleon [see Eqs. (2) and (3)]. By apply-
ing an operator product expansion (OPE) for large space-
like momenta, the correlator can be expressed as a sum of
coefficient functions, calculated in QCD perturbation
theory, that multiply matrix elements of composite opera-
tors. In the vacuum, these matrix elements are the non-
perturbative quark and gluon condensates. On the other
hand, a spectral decomposition shows that this correlator
describes the propagation of a (virtual) nucleon as well as
higher-mass states with nucleon quantum numbers. QCD
sum rules equate these two representations of the correla-
tor; then, after assuming a simple phenomenological an-
satz for the spectral density, spectral parameters of low-

lying resonances can be extracted in terms of QCD La-
grangian parameters and the condensates [2,3]. A Borel
transform improves the overlap of the two descriptions:
On the QCD side it improves the convergence of the OPE
by suppressing the contributions of higher-dimensional
operators, while on the phenomenological side it em-
phasizes the contribution from the nucleon pole [2].

First, we review the zero-density limit of the nucleon
sum rule [4]. The phenomenological description (spectral
density) is taken to be a nucleon pole plus a smooth con-
tinuum that accounts roughly for all higher-mass excita-

tions. Lorentz covariance implies two distinct Dirac ma-
trix structures for the vacuum correlator: a four-vector
(corresponding to y') and a scalar (corresponding to the
nucleon mass M~). A sum rule is obtained for each
structure. The ratio of the two rules leads to an expres-
sion for M~ as a function of M, the mass parameter of
the Borel transform. The key assumption of the QCD
sum rule is that, for a range of intermediate M values,
the Borel-transformed correlator is described both by a
truncated OPE (which is increasingly valid as M ~ ~)
and by a dispersion integral that is dominated by the nu-

cleon pole (which is increasingly true as M ~ 0).
Sum-rule analyses of the nucleon mass have been made

by Ioffe [4] and many others [3]. Ioffe concluded that
the contributions of higher-dimensional condensates and
the continuum are, in fact, sufFiciently small for values of
the Borel mass in the vicinity of M& that meaningful pre-
dictions can be made. Furthermore, the principal physi-
cal content of the full sum rule, that the scale of the nu-

cleon mass is largely determined by the quark conden-
sate, is manifest even in a simplified sum rule in which

only the leading contributions from the OPE to each sum
rule are kept and the continuum is neglected [3]. In par-
ticular, one can obtain a simple expression for the nu-

cleon mass [3],

M = —(«'lM')(qq&. .., (1)
where (qq&„.„=—(230~ 20 MeV) is the quark conden-

sate, and the formula is to be evaluated for M —M~.
(Note that in this simple Ioffe formula, Miv is sensitive to
the choice of the Borel mass; the optimal choice for the
Borel mass must be obtained from a more sophisticated
sum rule [3,4].) In this Letter, we generalize the Ioffe
formula to finite density.

It is natural to apply QCD sum-rule methods to calcu-
late the scalar and vector self-energies of a nucleon quasi-
particle in the nuclear medium. Ef the quark interactions
with the vacuum condensates strongly influence the low-

lying structure in the spectrum, which is an essential as-
sumption of the QCD sum-rule approach, then changes in

these condensates due to finite baryon density should also
be reflected in changes in the nucleon spectrum. Thus,
the condensates should set the scale for nucleon self-

energies in medium. There are several recent applica-
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tions of QCD sum rules to finite-density problems [5-7].
In Ref. [7], Drukarev and Levin use finite-density sum
rules to describe nuclear-matter saturation properties. In
the Drukarev-Levin approach, the distinction between
Lorentz scalars and the time components of four-vectors
is neglected. In contrast, we emphasize this distinction to
test whether the large scalar and vector optical potentials
used in Dirac phenomenology are implied by QCD.

Consider the correlation function II~(q) defined by

rl(x) =e,i„[u' (x)Cy„u"(x)]ysy"d'(x), (3)

rI~(q) =i „—
~

d'xe" "&T[q(x)q(0)]&, ,

with &O&~„denoting the matrix element of 0 taken in the
ground state of the nuclear medium. The ground state is
characterized by pz, the nucleon density in the rest
frame. Following Ioffe, the interpolating field g(x) for
the proton is constructed from up- and down-quark fields
as [4]

where a, b, and c are color indices and C is the charge-
conjugation matrix.

Lorentz covariance, parity, and time reversal imply
that IIjv(q) has the form

rl~ (q ) —=II, (q, q u ) + IIq (q, q . u )f+ II, (q, q ' u )&,

where u" is the four-velocity of the nuclear medium; i.e.,
u" =(1,0) in the rest frame. Note that there are three
distinct structures: scalar, g, and u', and thus three in-

variant functions. To generalize the IoN'e formula, we

keep only the leading term in the OPE for each invariant

function, and match to a simple ansatz with a nucleon

quasiparticle pole.
Wilson coefticients for the OPE at finite density can be

calculated using standard techniques [3,8] by incorporat-

ing all density dependence into the matrix elements. For
the present calculation, we need only the most singular
terms of the coordinate-space quark propagator in the
presence of the condensates [8]:

&T[q,'(x)qj'(0)]&„= ', 6', [y„l;, — 8'[yp];, &qy"q&, — 8"8;,&qq&p + (s)

where i and j are Dirac indices and N, is the number of colors. The only change from the vacuum calculation is a new
"condensate" &qy"q&~„which is simply the rest-frame quark density times u" (normal ordering with respect to the per-
turbative vacuum is implied). We neglect current quark masses and gluon condensate contributions, which are numeri-
cally small. The correlation function is evaluated by applying Wick s theorem to Eq. (2), using Eq. (5) for each con-
traction, and then projecting the leading contributions to each invariant function [8].

For convenience, we present the invariant functions of Eq. (4) in the rest frame of nuclear matter, where q u qo.
The leading contributions are [4,8]

II, (q, qo) =
q ln( —

q )&dd&p +

rIq(q', qo) =—
4 (q ) ln( —

q )+
z qoln( —

q )[&utu&~ +&dtd&~ ]+

II„(q',qo) =,q'ln( —q') [7&u u&p„+&dtd&p, ]+1

(7)

(8)

where we have suppressed terms that are simple polyno-
mials in q (including divergent terms), as they will be
eliminated by a subsequent Borel transform. Results for
the neutron are obtained by interchanging u and d. Fi-
nally, since we focus on isoscalar quantities in nuclear
matter, we take

&uu&p =&dd&p —=&qq&„,

&u'u&, =&d "d&p, &q~q&„= ', p~——,
- (10)

where &q q&~ is the quark density for one IIavor in the
nuclear-matter rest frame.

We generalize the conventional zero-density ansatz for
the phenomenological side of the sum rule by assuming a
quasiparticle pole for the nucleon, with real self-energies
independent of energy and momentum; all higher-mass
excitations are included in a continuum contribution.
These assumptions are consistent with the essential phys-

ics of the phenomenological optical potentials, which have
relatively small imaginary parts and are not strongly en-

ergy dependent in the region of interest [1]. Lorentz co-
variance dictates the form

where k~ is the coupling strength of the current il(x) to
the nucleon quasiparticle in medium and Z,", and X,, are
the self-energies. In general, we can write Z,", —=X, u"
+X,', q"; we assume Z, , , X,,', , and Z, are constants and
neglect Z,', in the discussion here. In the spirit of the IoA'e

formula, we neglect contributions from higher-mass exci-
tation s in this first simple calculation. With these
simplifications, the phenomenological representations of
the invariant functions in the nuclear-matter rest frame
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are

M~

q p
(i2)

sions for the scalar and vector densities,

z, =—,((qq&p
—(qq)„,,) =—

II, (q', qp) = —X&', , +1 (i3)
q

—p

11„(q',qp) =&Jv', ', + (i4)
q p

where we have defined M~ ——M~+ Z, and p =—M~
—X,, +2qpX, We view Eqs. (12)-(14) as following from

dispersion relations in q, with q u (effectively) fixed at
the quasinucleon energy. This approach suppresses an-
tinucleon contributions [8].

In the case of the vacuum sum rules, a Borel transform
with respect to spacelike q improves the overlap of the
theoretical and phenomenological descriptions of the
correlator [2]. In the finite-density case, the invariant
functions depend on both q and q. u; we Borel transform
with respect to —

q with q u held constant. Equating
the Borel transforms of the theoretical and phenomeno-
logical descriptions yields three relations, one for each in-
variant function:

kz Mjve " = — 2M (qq)p
4x

Xjve " = M — qpM (q q)
32 4 3 2 Pjv (i6)

Xjv'Z, ,e y ™- M4(qtq)
37r2

(i7)

(qq)p =(qq&...+ +
Pl„+ftld

(i8)

where m„and nod are the current quark masses. This can
be understood quite simply in terms of the Hellmann-
Feynman theorem [9]. Estimated corrections due to
higher-order terms in the density expansion are small
(—10%) at nuclear matter densities and below [9]. A re-
cent analysis of the a term [10] yields a value of approxi-
mately 45 MeV, with an uncertainty of order 7-10 MeV.

Taking ratios of Eqs. (15)-(17) leads to simple expres-

These sum rules depend on two parameters, the Borel
mass (M) and qp. We take qp to be the energy of the
quasiparticle we wish to study; p is equal to the on-shell
four-momentum squared of the quasiparticle. We expect
the optimal value of M to be around p (-1 GeV ),
which should ensure reasonable convergence of the OPE
while suppressing contributions from higher-mass singu-
larities.

To calculate the self-energies from these formulas, we
need to know the scalar and vector condensates in the nu-

clear medium, (qq)~ and (q q)~ . The vector condensate
is related to the nucleon density in Eq. (10). The change
in the scalar condensate, to lowest nontrivial order in a
density expansion, is related to o.&, the nucleon a term
(at r =0) [7,9]:

64'
( t )

32yr
q q pw 2 pN &

(i9)
(20)

which should be valid below nuclear matter saturation
density. We have neglected the second term in Eq. (16),
which is higher order in the operator product expansion,
and to derive Eq. (19) we have subtracted the zero-
density result [Eq. (1)l. Upon taking the ratio of Eqs.
(19) and (20), the explicit dependence on the Borel mass
and the density drops out, yielding

N

4(m„+ md )
(2i)

For typical values of az (45 ~ 8 MeV) and the quark
masses (m„+md =14+ 4 MeV), this ratio is close to —1

( —0.8+ 0.3), indicating a substantial cancellation of X„
and Z, , in the medium. Since Z, and Z, , are essentially
the real parts of the optical potential, this qualitative re-
sult is in agreement with Dirac phenomenology.

The individual magnitudes of the scalar and vector
self-energies in Eqs. (19) and (20) depend on the Borel
mass. As in the vacuum sum rule, an appropriate choice
for the Borel mass cannot be determined with certainty
from an analysis as simple as the one presented above; it
requires a study of corrections due to perturbative efIects,
higher-order condensates, and other singularities [8].
However, scales on both the theoretical and phenomeno-
logical sides of the sum rules are similar to those in the
vacuum problem (e.g., p —MJv), so it is reasonable to
assume that the optimal Borel mass will be close to the
one that works best in the vacuum sum rule, Eq. (1).
Taking this value of the Borel mass (M —1 GeV ) in

Eqs. (19) and (20) yields Z, , ——Z, —400 MeV at nu-
clear matter density. These magnitudes are consistent
with the large and canceling scalar and vector potentials
used in the Dirac optical potentials, although they are
somewhat larger [1]. The results are also comparable to
those obtained in a simple mean-field treatment of the
Walecka a-co model [11].

Although the 400-MeV values for Z, , and —X, set the
scale for nucleon self-energies in the medium, the precise
magnitudes and degree of cancellation implied by Eqs.
(19)-(21) should not be taken too seriously at this
point —there are significant corrections from higher-order
terms in the OPE, from the density expansion, and from
the continuum. For example, including the second term
in Eq. (16) with qp —1 GeV reduces the prediction for
—X, by roughly 50%. Thus, it is not obvious that the
cancellation of the self-energies, which is essential to
Dirac phenomenology, will survive in a more complete
treatment of the sum rule. Various corrections will be as-
sessed in Ref. [8] to test the stability of our leading-order
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results; preliminary calculations suggest that the self-
energies may be reduced by as much as 50%, but still ex-
hibit significant cancellation.

An important assumption of the preceding analysis is
that the phenomenological side of the sum rule is dom-
inated by the (positive-energy) nucleon pole. Following
Ref. [7], we can consider the nuclear medium as an 2-
body system with four-momentum P", and postulate a
dispersion relation in q at fixed s~ ——(q+P) for each in-

variant function [12]. For large A, fixed s~ implies that

qo is fixed and independent of q [except when q is
O(A)]. Higher-mass baryon and nucleon-meson states
will be suppressed by the Borel transform; they can be in-
cluded in a more complete sum rule with a simple contin-
uum ansatz [7]. Furthermore, we expect that low-energy
excitations in the (2+ I )-nucleon system will simply
spread strength from the nucleon pole to nearby q . In
the optical model such a spreading of strength is de-
scribed by the imaginary part, which we know on phe-
nomenological grounds to be relatively small [11. Thus,
assuming a sharp quasiparticle pole should not substan-
tially affect our conclusions. In summary, the dominance
of the quasinucleon pole is plausible; however, we em-
phasize that the dispersion relations in medium require
further study.

What about relativistic nuclear dynamics? The sum-
rule approach emphasizes the role of the condensates and
gives limited information about degrees of freedom at the
hadronic level. The correlator is studied at relatively
large spacelike momenta and thus it is di[[icu[t to resolve
the hadronic content of the intermediate states. In par-
ticular, the large scalar and vector self-energies we find

do not necessarily imply that there are large contributions
from virtual NN pairs [I]. The possibility of separate
Lorentz scalar and vector potentials follows directly from
the Lorentz structure of the correlator [Eq. (2)], and has
no necessary connection to virtual pair creation. Further-
more, the connection between our description based on
quark interactions with finite-density condensates and a
conventional meson-exchange picture is not clear.

Although we use the machinery of the QCD sum rules,
we emphasize that our qualitative results do not rely on
specific details of the sum rules. In particular, our quali-
tative picture is ultimately based only on the assumption
that the properties of nucleons are largely determined by
interactions with the condensates. The key input to our
calculation is the value of the in-medium scalar conden-
sate, which we relate to the nuclear density and the nu-
cleon cr term. Using standard values we see that the sca-
lar condensate has a strong density dependence —it is re-
duced by 30%-40% from its vacuum value at nuclear

matter density. This strongly suggests that nucleons must
experience a large scalar potential. Given the empirical
fact that the total potential, i.e., scalar plus vector, is
known to be small (of order —50 MeV), we expect a
strong vector potential with the opposite sign. We find
that it emerges naturally from interactions with the
finite-density medium, depending in leading order only on
the total quark density. Scalar attraction and vector
repulsion of this sort are the essential ingredients of rela-
tivistic nuclear physics. While improved approximations
will affect the quantitative results, we expect these basic
ingredients to survive.
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