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The basins of attraction of period-2 attractors can be subdivided into two domains, one for each of the
stable trajectories which are one drive cycle apart. This generalizes to period-n attractors. Periodic
drive signals can be replaced by certain chaotic signals which result in the elimination of multiple
domains of attraction. The attractors are similar to the original ones, but two systems on the same at-

tractor cannot get out of phase with each other.

PACS numbers: 05.45.+b

When nonlinear systems are driven with simple period-
ic signals even nonchaotic behavior can be complex, such
as period doubling, tripling, etc. [1]. This can lead to
difficulties in obtaining system behavior in which driven
components are in phase. The basin of attraction of a
period-n trajectory can be subdivided into n domains, one
for each of the final, out-of-phase trajectories on the at-
tractor. Thus, several nonlinear systems driven with the
same periodic signal can be in a stable situation in which
they are out of phase with each other. This problem can
be compounded in a system with a fractal basin bound-
ary. Here prediction of the final system state (phase) can
be very difficult, as McDonald, Grebogi, Ott, and Yorke
[2] have pointed out, since the fractal structure gives an
uncertainty to determining the domain of the initial con-
ditions which is difficult to eliminate. We propose a way
to use chaos to eliminate these problems.

Very little work has been done on driving nonlinear
systems with signals that are chaotic. Some exceptions
are recent work by Hiibler and co-workers [3,4] and by
Pecora and Carroll [5-8]. We address in this paper, for
the first time, the questions of basins of attractions, sta-
bility, and dynamical behavior of a large set of such sys-
tems.

In particular, we show that it is possible to add certain
chaotic signals to the periodic drive to eliminate multiple
domains, but retain the stability and the general dynami-
cal topology of the trajectory. The overall shape of basins
of attraction will be retained, but will be simplified. This
guarantees that devices or systems driven with these sig-
nals will always synchronize (be in phase) and prediction
of their final state will be more accurate, yet their behav-
ior will be almost the same as in the periodically driven
case.

Theory.—In the following we give a heuristic argu-
ment for the simplification of period-n-attractor basins.
We refer to the origin of the drive signal as the drive sys-
tem and the driven system as the response system. We
define a basin of attraction as the set of all points in
phase space that converge to a particular attractor and a
domain of attraction as the set of points converging
asymptotically to a particular final trajectory. For exam-
ple, a period-2 attractor will have its basin divided into

two domains.

We consider a driven dynamical system w=f(w,v),
where w and f are n-dimensional vectors and functions
and v is a periodic driving signal. Then we change v
slightly to a new driving signal v'. If w'(¢z¢) is an initial
point in the v'-driven system nearby w(zo), their differ-
ence will evolve according to

dw'—w)
dt

which, by adding and subtracting f(w,v’), can be rewrit-
ten as

=Aw=f(w'v")— f(w,v), (D

M =D, f(w,v)Aw+B(), (2)

where D, f is the Jacobian of the vector field, B(z)
=f(w,v') — f(w,v), and we have dropped the higher-
order terms for now. Equation (2) is a linear equation.
Its solution can be given in terms of the transfer function
[9] ®(z,20) for the homogeneous version of Eq. (2), viz.,

aw (D) =0, 108wt + ) o, B(dr. ()

If the original response system is stable, it will have nega-
tive conditional Lyapunov exponents [5-7,10]. This
means [9] there exist two constants ¢; >0 and ¢,>0
such that lI®Il<cie ~<%. If B(¢) is bounded by a con-
stant b, >0 (which it will be for many cases), |Aw(z)|
=<c1b)/c, for large ¢.

For small deviations from the original periodic drive
(b, small) the trajectory will always remain close to the
original trajectory— multiple-period attractors will re-
main nearly so. For larger deviations from the original
drive the above analysis will not be valid for long times
since we cannot drop higher-order terms and b, may be
large enough that Ax can become on the order of the at-
tractor size. So we should expect a threshold above
which the behavior of the system will cease to be always
close to that of the original response.

However, the new behavior above the threshold may
still resemble the original response if the new response
motion remains stable with respect to the new drive v’
and the new drive is still not too different from the origi-
nal. Hence, we will use a chaotic drive with spectral
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features similar to the original periodic drive. But, since
v' has a chaotic component, the periodicity will be lost
and multiple-period behavior and multiple domains will
not be possible. We use the term pseudoperiodic drive to
describe this drive signal.

Certain chaotic systems (e.g., the Rdssler) can have
very sharp spectral peaks. By tuning them so that their
peaks match the frequencies of the original periodic drive
we have candidates for just the drives we need. The addi-
tion of chaos can be accomplished by simply replacing the
periodic drive with the output from such a chaotic system
[8] or in a more controlled fashion by adding the chaos to
the periodic drive, viz.,

v'@)=v(@)+ex(), 4)

with ¢ variable and x(¢) a dynamical variable from the
chaotic system, which also serves to demonstrate the
threshold phenomena.

Numerical experiments.— We chose the Duffing sys-
tem [1] (Ueda version) as the response. The pseudo-
periodic drive was a cosine plus the x component from a
Rossler system which was tuned to have its large spectral
peak at the same frequency as the cosine. The equations
of motion are

dW|= de
a VP Tar

where v’ is as in Eq. (4). We use v(¢) =cos(t), k =0.05,
a=0.21, B=0.15, a=b=0.2, and ¢ =4.5. For these pa-
rameters the cosine-driven Duffing system has period-1,
period-2, and period-3 attractors coexisting, with period-2
and period-3 overlapping in the 2D response w subspace
[11].

Let us examine one case first, €=0.129. The period-3
attractor ceases to exist (becomes unstable), which we
comment on later. The period-1 remains and the period-
2 loses its multiplicity—it changes to an attractor which
appears much like the original period-2, but which has

=—kwytwitav'+8, (5)

period-2

s

period-1

= ML

time

only one domain of attraction. We call this a pseudo-
period-2 attractor. Figure 1 shows the attractors of the
cosine-driven and the pseudoperiodically driven Duffing
system along with the period-2 and pseudoperiod-2 time
series. The latter go for — 30 cosine cycles before getting
out of phase (as they must), but the pseudoperiodic tra-
jectory continues to mimic the period-2 behavior forever.
Hence, we can get the Duffing system to behave much
like a period-2 attractor, but without the multiplicity.

Figure 2(a) shows the domains of attraction for the
period-1, -2, and -3 attractors for the cosine-driven
Duffing system. The situation is rather complicated, with
six different domains of attraction. There is also evidence
that there are fractal basin boundaries, although we have
not studied this in detail.

Figure 2(b) shows the basins of attraction for the
pseudoperiod-1 and -2 attractors [1]. The situation is
greatly simplified. All initial conditions for the period-3
attractor have been converted to pseudoperiod-2 basin
points. Only one pseudoperiod-2 domain exists. Howev-
er, the overall shape of the pseudoperiod-2 basin is very
close to the combined basins of the period-2 and -3 at-
tractors in Fig. 2(a) without the apparent fractal struc-
ture.

We have explored this system for other € values and for
other Rossler ¢ parameters which change the spectral na-
ture of the chaos. In general we find that there is a
threshold (e value) above which the period-3 orbit be-
comes unstable (going to a period-2) and, simultaneously,
the period-2 loses its multiplicity. The number of cosine
cycles (averaged over the pseudoperiod-2 basin) for the
Duffing system to converge to the pseudoperiod-2 trajec-
tory as a function of € scaled as 1/(¢—¢.)" above thresh-
old, with ¢ =0.0154 and v=0.955. The & threshold
amounts to adding only a few percent chaos (in terms of
amplitudes) to the cosine drive to eliminate multiplicity.
This scaling is like that for transient chaos [8,12,13].
This suggests that the loss of attractor multiplicity comes

T

time

FIG. 1. Attractors and period-2 time series for (a) periodically driven and (b) pseudoperiodically driven Duffing system.
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FIG. 2. (a) Basins (domains) of attraction for cosine-driven
Duffing system. (Everything outside of the hatched area goes to
period-1.) (b) Basins of attraction for pseudoperiodic driven
Duffing system.

from a crisis.

For Rossler ¢ values in which the chaos is more broad-
band (above ¢ == 8.3) we also find thresholds in the same
place, but the Duffing system often goes unstable (a posi-
tive conditional Lyapunov exponent [5-7]) at moderate ¢
values and the nature of the trajectories does not emulate
the period-2 attractor as well. Hence, spectral similarity
and, perhaps, small positive Lyapunov exponent for the
chaotic component of the drive appear necessary for emu-
lation of the multiple-period behavior and the stability of
pseudoperiodic trajectories.

The loss of stability of the period-3 Duffing at the
threshold prompts us to conjecture that m any two-
dimensional system overlapping trajectories cannot coex-
ist above threshold. The response system is no longer
periodic, meaning that the system’s phase-space points on
each trajectory can come arbitrarily close to each other at
their crossing. If both are assumed stable this would lead
to a contradiction in having nearby points asymptotically
stable to two different attractors. We are examining this
in more detail presently [8]. In higher dimensions attrac-
tor crossing is not generic and destruction of attractors
will probably not happen this way.

(@)

(b)

FIG. 3. Oscilloscope pictures of (a) period-2 and (b)
pseudoperiod-2 circuit responses.

Electrical circuit demonstration.—To test multiple-
domain elimination using pseudoperiodic driving on a real
system, we built two closely matched nonautonomous
nonlinear circuits. The differential equations describing
these circuits were similar to those describing a Rossler
attractor, except that we removed the y component of
these equations and replaced it with an external sinu-
soidal drive. The driving frequency was 2.02 kHz. The
equations for this system are

ax =Acoswt+const—z, az=b+xz—cz, (6)

where a =10%, b=0.25, and ¢ =2.94.

We first drove a pair of these circuits with the sum of
the 2.02-kHz cosine wave and the x component of an au-
tonomous 3D Rossler circuit with a spectral peak near
2.02 kHz. We set the two response circuits initially to be
period doubled (4 =0.495 V and const =15 mV) and set
the initial conditions to make the two systems out of
phase. We observed the phase relation between the two
response systems by plotting the x component of one
versus the x component of the other on an oscilloscope.

As we began to add the chaotic Rossler signal to the
cosine drive, we observed a slight broadening in the at-
tractor for the period-doubled response systems. When
the amplitude of the added chaotic Rossler signal exceed-
ed a threshold of about 9% of the amplitude of the cosine
drive, we observed the two response circuits become in
phase. Above this threshold, we were not able to reset
the two systems to remain out of phase. Figure 3 is an
oscilloscope photograph of the attractors for one of the
response systems. The attractor for this system still
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resembles the original period-doubled attractor.

Since it is impossible to make two perfectly identical
circuits, the signals from the two response circuits were
never identical. We used an indirect method to measure
how closely the signals from these two circuits came to
being in phase. We sampled the x component from each
response circuit at the point at which the cosine com-
ponent of the drive crossed zero in the positive direction.
These Poincaré sections for cosine driving consisted of
two points. We drew a perpendicular bisector to the line
between these two points to divide the Poincaré sections
into two regions. We then counted the fraction of times
that the two response systems were in corresponding re-
gions during pseudoperiodic driving. This could only
happen when the two systems were in phase.

We found that when the chaotic Réssler signal reaches
about 9% of the drive, the two systems become in-phase
about half of the time. We believe that the reason that
the in-phase fraction does not rise quickly to 100% is that
when driving in this regime, the response systems are
close to being unstable (chaotic). Small amounts of noise
may cause the two systems to momentarily diverge from
each other, throwing them out of phase until they are
able to approach each other again. With larger amounts
of chaotic component (20%-30%) the percentage of time
the responses remained in phase rose to 80%-90% [8].

We also found that many other chaotic circuits were
good candidates for use in pseudoperiodic drives and gave
similar results. These will be reported on elsewhere [8].
We also attempted to simplify the domain structure by
driving with quasiperiodic signals. The latter was sensi-
tive to drive parameter changes (a slight shift in frequen-
cy changes a quasiperiodic to a periodic signal). This re-
sulted in beating behavior of the response attractor and
often retention of multiple-period behavior.

Conclusions.— There are several striking features of
pseudoperiodic driving above threshold. One is robust-
ness. The stable region spans at least an order of magni-
tude in £ and is not sensitive to changes in the driving sys-
tem, provided the drive remains chaotic. Another feature
is that pseudoperiodic driving results in smooth response
behavior which closely mimics (forever) the response be-
havior with a periodic drive. Finally, we often need add
only a few percent of the chaotic signal to a periodic sig-
nal to eliminate multiple-period behavior.

Multiple-period behavior is ubiquitous in nonlinear sys-
tems. This provides a broad range of potential appli-
cations wherever out-of-phase behavior is deleterious.
These include driven modes in spatial-temporal systems,
driven systems of coupled oscillators [14-18], neural nets
with periodic input, nonlinear electrical circuits needing
nearly periodic synchronization pulses, and biological sys-
tems [19-21]. If one wants to drive a complex nonlinear
system so that all subsystems are, in some way, stably
synchronized, then the driving signal of choice would not
be a periodic one, but rather a pseudoperiodic one.
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FIG. 3. Oscilloscope pictures of (a) period-2 and (b)
pseudoperiod-2 circuit responses.



