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Completing Ginibre s work we determine the joint probability density of eigenvalues in a Gaussian en-

semble of real asymmetric matrices, which is invariant under orthogonal transformations. The symme-

try parameter r may vary from —
1 (antisymmetric ensemble) through 0 (completely asymmetric ensem-

ble) to +I (symmetric ensemble). The elliptic law for the average density of eigenvalues in the limit of
large dimension is recovered. Matrices of the type considered appear in models for neural-network dy-
namics and dissipative quantum dynamics.

PACS numbers: 05.20.—y, 02.50.+s, 05.30.—d, 87.10.+e

Since the early 1950s, random matrix theory has de-
veloped into a powerful tool in statistical mechanics [1].
Besides the classical examples —statistical properties of
nuclear and atomic spectra —now stand applications con-
cerning quantum signatures of chaos [2]. Random ma-
trix results are also encountered in the theory of spin
glasses and neural nets.

In the Sherrington-Kirkpatrick model of spin glasses
[3] symmetric exchange interactions J~ (=JJ;) between
N Ising spins are random variables with zero mean and
variance (J~j~) = I/N, iAj. In the large-N limit the aver
age eigenvalue density is Wigner's semicircle law [1] with
a radius of 2 on the real axis. For neural networks Ising
spin-Aip dynamics has been applied to neuron dynamics
[4] with (potentially asymmetric) synaptic efficacies J~,
and for a simple model the eigenvalue density has been
studied for covariances (J~j~) =1/N and (J~J~;) = r/N
(i&j and —1~ r ~+1). One finds [5] for large N a
homogeneous eigenvalue distribution in the complex
plane, in an elliptic shape, centered around the origin
with half axes 1+ z and 1 —z. The eigenvectors play an
important role in network dynamics especially if analog
neurons with variable nonlinearity are considered [6].

Random asymmetric real matrices also occur as gen-
erators of dissipative quantum dynamics. It has been
found [71 that statistical properties of the eigenvalues for
large N are well described by the Gaussian ensemble of
general complex (non-Hermitian) matrices investigated
by Ginibre [8]. It is one of the goals of our paper to justi-
fy this conjecture. In order to determine the degree of ei-
genvalue repulsion in the complex plane for real asym-
metric matrices, an almost-degenerate perturbation-the-
ory argument was given in [9], together with a plausible
assumption on the probability density of the occurring
matrix elements. Now, the degree of level repulsion can
be given rigorously.

One of the most important successes of random matrix
theory is, for given matrix ensembles, the determination
of the joint probability density of all eigenvalues. From
this, all correlation functions (including the average ei-
genvalue density) can be derived. Especially, for small
eigenvalue differences the correlation functions show the
above-mentioned property of level repulsion present in

quantum systems which behave classically chaotic. Re-
quirements of statistical independence for unrestricted
matrix elements and of invariance with respect to certain
symmetry groups lead to Gaussian matrix ensembles.
Three different such ensembles of Hermitian matrices
have to be studied, when nonintegrable conservative
quantum systems are dealt with [10]. In these cases the
joint probability density of (real) eigenvalues
. . . ,kz, which is obtained by integrating out all eigenvec-
tors, is of the form

Here the constants 2 and 8 set normalization and scale,
and the exponent p, which determines the degree of level
repulsion, takes the values 1, 2, and 4 for real, complex,
and quaternion real Hermitian matrices, respectively.
The corresponding Gaussian ensembles are called orthog-
onal (GOE), unitary (GUE), and symplectic (GSE) be-
cause their members are invariant under the indicated
transformations. From the mathematical point of view it
was a natural task undertaken by Ginibre [8] to calculate
the joint probability density of eigenvalues in the matrix
ensembles that arise if the Hermiticity condition is

dropped in GOE, GUE, and GSE. For general complex
and general quaternion real matrices with independently
Gaussian distributed matrix elements, the problem was
solved. The result for complex matrices is again of the
form (with certain constants 2 and B)

P(~, ,t, . . . , t ) =A + Il; —~ I exp —BQI);I

(2)
From (2) one derives the nearest-neighbor-distance dis-
tribution [7], which goes as ccS for small distances S.
The extra factor S in the level repulsion, as compared to
(2), is contributed by the two-dimensional volume ele-
ment in the complex plane.

For asymmetric real matrices the restricted case of real
eigenvalues which could be treated completely by Ginibre
yields (1) with p=1. In accordance with the conjecture
in Ref. [7] (see above), we should expect in the general
case a joint probability density which shows certain as-
pects of both distribution (1) and distribution (2). In the
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following we will fill the gap and derive the desired gen-
eral joint probability density for real asymmetric ma-
trices. For simplicity, we will treat the case of indepen-
dent matrix elements with (J;~) = I explicitly and later we
will generalize to correlated matrix elements and more
general covariances using scale transformations.

We start with the normalized Gaussian measure

dp(J) =(2z) exp —g J;./2 +dJ; . (3)

J=XAX ', det(~)&0,
so that A takes the form

A =UAU ', Aq =X;6q,
and the unitary matrix U is

(6)

We try to find the joint probability density of eigenvalues
of the matrix J;~, ij 6 {1,2, . . . , N}, with the only re-
striction being that all J;~ are real. For an eigenvalue k
of the matrix J~ there exists an eigenvector (J&0, such
that

gJ;.g =kg. . (4)
J

Since J;~ is real X is also an eigenvalue with eigenvector
gj*. Hence the eigenvalues are real or complex conjugate
in pairs. Following from (4), X is a zero of the charac-
teristic polynomial

N

det(J, , —XS,, ) =0=+(X,—X). (5)
i=l

In the generalization of (4) we may define the eigenval-
ues as the N zeros of the polynomial (S). We do not con-
sider exceptional cases where eigenvalues cross, because
these have measure zero [8]. We especially exclude cases
where eigenvectors collapse, so that we have R real eigen-
values and Q complex-conjugate pairs with N=R+2Q.
From elementary linear algebra we know [8] that a real
matrix J with distinct eigenvalues can be transformed by
a nonsingular real matrix X,

with a = I/J2. Here we assume that the first R eigenval-
ues are real and the next Q pairs are complex conjugate.
The two-dimensional blocks in (8) transform the com-
plex-conjugate eigenvalues X, =a+ib, k* =a —ib into a
real matrix

(

1 1

l l

So A consists of a diagonal part due to the real eigenval-
ues and Q blocks of type (9) due to the complex-con-
jugate pairs. As one sees easily, the columns of the ma-
trix XU are the eigenvectors of the matrix J. Hence they
can be chosen real for real eigenvalues and complex con-
jugate for complex-conjugate pairs of eigenvalues.

From linear algebra we know as well that the transfor-
mation matrix X can be written as X=OYD. Here
0 C O(N) is a real orthogonal matrix, Y 6 Y(N) is a
real upper triangular matrix with diagonal elements 1,
and D C D(R, Q) is a matrix of the form of A with
det(D)%0. Originally one has the relation X=OYD,
where D is diagonal [8]; however, this is readily general-
ized to the given equation.

O(N), Y(N), and D(R, Q) are groups with respect to
matrix multiplication. It is rather obvious that the 2&2
matrices of type (9) are isomorphic to the field of com-
plex numbers; therefore all matrices D commute with A.
Hence D disappears from the representation (6) of J.
Now we have

a b
—b a . (9)

a+ib 0 1 —i
0 a —ib 1 i

J=OJO ' with J=YAV (lo)

The corresponding eigenvectors can be chosen as the
columns of the matrix OYU. Counting independent pa-
rameters we find N for J, N for A, and N(N —I )/2 for
both 0 F O(N) and Y C Y(N). Thus we may ask
whether representation (10) is unique for a special order
of eigenvalues.

Let us suppose in the following without loss of generali-
ty that the eigenvalues in (7) are ordered according to

&Xg, a) &a2« ag, b) )0. (11)

Here and below considerations can mostly be restricted to
the two-dimensional blocks along the diagonal, where Y
takes the form

1 y
0 1

(12)

1

(l l ', (8)

We denote the oA-diagonal element by y. It can be
shown that by two rotations allowed by (10) (multiplying
Y from left and right) y can be transformed to —y.
Choosing y positive in the following, the only nonunique-
ness in a representation (10) of J that obeys (11) is due
to 2 +~ inflections S (S =1, including unity) that com-
mute with 6: replacing O and Y by O' =OS and
Y'=SYS, respectively, we get the same matrix J for
given A.
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We now transform the Gaussian measure (3). The ex-
ponent

the representation (10),

dJ =S[[U ' Y '(0 ' dO+dYY ') YU, A]+dA]$
g J'=Tr(JJ') =g J' (i3)

is invariant under orthogonal transformations; therefore
integration over the orthogonal group O(N) should be
simple. In a two-dimensional block along the diagonal, J
is

with 4'=OYU. The Lebesgue measure (17) is invariant
under a similarity transformation S' of J; therefore we
may immediately separate d ~ X due to the diagonal
part dA. In an intermediate step we find

1J=
0

y
' a b 1

1
' —b a 0

r

a yb b(—1+y )
—b a+yb

(14) and for fixed A, ;,

All further elements J;~ below the diagonal (e.g. , i )j)
vanish. Setting j=b(1+y ) ) b, this gives a contribu-
tion

2(a' —b ')+ (j+b) ' (is)

to the sum (13). Therefore it is most convenient to con-
sider A, 0, and J;~ (for i & j) as the independent vari-
ables. If we manage to integrate out 0 and JJ (for
i & j), we will have the desired joint probability density of
eigen values.

It is indeed possible to change the independent vari-
ables and transform the Lebesgue measure in (3) using
the representation (10). Let us introduce

. R Q

d ~X= Q dk;+2d db

(2i)

da —y db (1+y )db+ dy+ dp
—dP —db da+y db

and therefore

(22)

The calculations may conveniently be done with the help
of the calculus of alternating differential forms [11]. In-
serting (21) into (20) we obtain the important equation
(17). The appearance of the off-diagonal elements yi in

the diagonal blocks (12) of Y may be understood from
the two-dimensional case. Then 0 ' dO+ d Y Y
+ YdA Y ' which appears to be relevant for (17) has
the form

i&j k=1
IIdJ =dyydX2dr2dbl~ (23)

A procedure similar to the one used by Ginibre [8] leads
to

N
2 dl2

A(N) = dQ(N) =+
d=) I d 2

Here dp is the off-diagonal element of the antisymmetric
matrix 0 ' dO.

With the help of the transformed Lebesgue measure
(17) the integration over the eigenvectors, i.e., dO and
dY, is simple. Since there is uniqueness only up to
inIIections and we want to integrate over the whole group

(18) O(N), we have to divide by 2 +~. The integration over

J;~ outside the two-dimensional blocks (14) is simply
To achieve (17) we first calculate the increment dJ using Gaussian. There remains the integration for J;~ inside a

block. Using (1S) we get for each block a term

djexp[ —(a —b ) —(j +b) /2] =Jn/2exp[ —(a b)]erfc(b J2) . —

Collecting all expressions we obtain

fO R 0
„--dp(J) =KN g lx; —

A~ l +exp( —x;/2) +exp[ —(a~ —
b~ )]erfc(b~ J2)d

i& j i=1 j=l

with

ItN ——ti(N)2 (22r) &N+ ~~~4

(24)

(2s)

(26)

Here f- denotes the integration over all eigenvectors, which we have carried out. The left-hand side of (2S) yields by
definition the joint probability density of eigenvalues,

~-dP(J) =P(X~,A2, . . . , XN)d (27)
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Equations (25)-(27) are the central result of our paper. It is possible to write P(l~, Xq, . . . , Xtv) in a symmetric
fashion:

(28)

Note, however, that the explicit form of the measure
d ~ X. depends on R and the chosen order (11). That
means we have to distinguish between cases with R =0,
1,2, . . . real eigenvalues and the rest of the eigenvalues
being complex conjugate in pairs. Only summing over all
R yields total probability 1. The prefactor Qt&~)X; —

X~t

determines the degree of level repulsion. For a pair of
adjacent real eigenvalues it is proportional to tk; —Alt,
showing linear level repulsion as in the Gaussian orthogo-
nal ensemble of real symmetric matrices. For two eigen-
values A, ],X2 meeting in the upper complex plane,

is proportional to tX&
—kzt, yielding to-

gether with the two-dimensional volume element the cu-
bic level repulsion as in Ginibre's complex ensemble.
Furthermore, for large % most of the eigenvalues lie far
from the real axis; in this case the weight factor in (25)
contributes for each eigenvalue in the upper plane a fac-
tor exp( —tX;t ), again as in the complex ensemble. Be-
cause of this fact and with the help of Mehta's method
[1] we are able to recover the circle law for the average
eigenvalue density in the large-N limit.

In conclusion, we have derived the joint probability
density of eigenvalues of asymmetric real matrices with a

Gaussian measure, invariant under orthogonal transfor-
mations. Formulas (27) and (28) have to be interpreted
for a given order of eigenvalues (11). Each case R=1,
2, . . . , N has to be considered separately. For example,
for N odd and R =1, expression (28) integrated with re-
striction (11) yields the probability that exactly one ei-
genvalue is real and all further eigenvalues are complex
conjugate in pairs. %e have a simple algebraic algorithm
to calculate all these probabilities; e.g. , for N=2 the
probability that both eigenvalues are real is I/W2. We
calculated the averaged fraction of real eigenvalues up to
N =60 and found that it scales roughly as cc[/JX for
large N in agreement with Ref. [5]. It is remarkable that
E~ does not depend on R.

In the limit of large N we could recover the circle law
for the eigenvalue density in the completely asymmetric
case (r =0). For the correlated case (z~0), which is
partly symmetric, we find the elliptic law, of course. For
completeness and use in the context of neural networks
we give here the joint probability density P, (X ~, kq,
. . . ,gatv) for general covariances (J~l) =1/N, (J;,Jl;) =r/
N, and (J;;)= (I + r )/N:

!

P, (X),Xp, . . . , k t)v=Dexp r g(yX;) /2 P(yk(, yk2, . . . , gatv) (29)

with

y =N/(1 —r ) and D=[N/(1+r)] (1 —r ) (30)

Our next task is to calculate all correlation functions,
which will have a quite complicated structure due to the
singular behavior on the real axis.
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