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“Fractional Statistics” in Arbitrary Dimensions: A Generalization of the Pauli Principle
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The concept of “fractional statistics™ is reformulated as a generalization of the Pauli exclusion princi-
ple, and a definition independent of the dimension of space is obtained. When applied to the vortexlike
quasiparticles of the fractional quantum Hall effect, it gives the same result as that based on the braid
group. It is also used to classify spinons in gapless spin- 5 antiferromagnetic chains as semions. An ex-
tensive one-particle Hilbert-space dimension is essential, limiting fractional statistics of this type to topo-
logical excitations confined to the interior of condensed matter. The new definition does not apply to
“anyon gas” models as currently formulated: A possible resolution of this difficulty is proposed.

PACS numbers: 05.30.—d, 71.10.+x

The concept of ‘““anyons” or particles with “fractional
statistics” in two-dimensional (2D) systems [1] has been
a subject of intense study in recent years, and has found
application in the theory of the fractional quantum Hall
effect [2] (FQHE). More recently, it has formed the
basis of the theory of ‘“anyon superconductivity” [3]. The
anyon concept is essentially two dimensional; however, a
recent study [4] of “spinon” excitations in one-dimen-
sional antiferromagnets has led me to a variant notion of
fractional statistics which, like the conventional Bose and
Fermi statistics, is formulated without specific reference
to spatial dimension.

This new definition can be considered as a generaliza-
tion of the Pauli exclusion principle; when applied to the
FQHE, it coincides with the now-standard 2D anyon
definition [1] in terms of the braiding of particle trajec-
tories; in general, however, the two definitions are not
equivalent. The definition proposed here requires that
single-particle Hilbert-space dimensions are extensive,
which is a common property of, e.g., topological excita-
tions of a condensed-matter state, but not of the flux-
carrying Newtonian point particles of the “anyon gas”
model [1]. The statistics as defined here is not affected
by the attachment to the particles of gauge fields which
conventionally lead to ‘statistical transmutation” of
long-distance, low-energy properties: For example,
“hard-core lattice bosons” would be classified as fermions
(that carry a gauge field), despite their bosonlike low-
energy properties, because of their fermionlike exclusion
principle and band-filling property.

Consider the Hilbert space #, of states of a single par-
ticle of species a, confined to a finite region of matter,
where this space is spanned by wave functions ¢2(r),
v=1,...,d, It will be crucial for this discussion that
the dimension diml[#,] =d, is finite and extensive, pro-
portional to the size of the condensed-matter region in
which the particle exists. This implies that the “particle”
is an elementary excitation that can only exist in the in-
terior of a region of condensed matter, and is not an ele-
mentary particle which can have arbitrarily large mo-
mentum, and exist in the vacuum outside the condensed-
matter region. In general, the fractional-statistics parti-

cle will be a topological excitation of a condensed-matter
state.

Now consider the wave function of an N-particle sys-
tem of such particles with coordinates and species indices
{ri,a;;i=1,...,N} and let N, be the number of particles
of species a. If the coordinates of the N —1 particles
with labels j#i are held fixed, the wave function
¥(ry,...,ry) can be expanded in a basis of wave func-
tions of the ith particle as

2 AUrj,a;j=i) oy (riirj,agj=i}) . n

The set of wave functions ¢¢(r;{r;,a;;j#i}) span a one-
particle Hilbert space #,({r;,a;;j=i}), with dimensions
d,({N.}). This dimension must be independent of the
coordinates of the particles with labels j>i, and must be
the same for all identical particles of the same species. It
will depend only on the boundary conditions and size of
the condensed-matter region and the numbers {N,} of the
different particle species.

In general, d, will change as particles are added, while
keeping the boundary conditions and size of the con-
densed-matter region constant. This will provide the
basic notion of statistics developed here. I define the sta-
tistical interaction g, through the differential relation

Ada= -ZgaﬁANﬂ’ (2)
B

where {ANg} is a set of allowed changes of the particle
numbers at fixed size and boundary conditions. Conven-
tional bosons have g,s =0, while the Pauli exclusion prin-
ciple for fermions corresponds to g,s=2J,5. The relation
(2) may be considered as a generalization of the Pauli
principle.

In order for a thermodynamic limit to exist with exten-
sive single-particle Hilbert-space dimensions d,, the sta-
tistical interactions g,s must be independent of the num-
bers of particles. The existence of a thermodynamic limit
also requires that the g,z are rational, so that limit can be
achieved through a sequence of proportional finite incre-
ments of the size of the system and the particle numbers.

For state-counting purposes at fixed particle numbers
the particles can be regarded as bosons with a Fock-space
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dimension dg =d, or fermions with a Fock-space dimen-
sion dpr=d,+N,— 1. In either interpretation, the total
size of the full Hilbert space of many-particle states, at
fixed {NV,}, will be

(d,+Ng— 1)
I;I (N d— 1

The construction of a fermionlike or bosonlike description
of the states thus does not imply anything about the
statistics: The particles are only true bosons (fermions) if
their effective Fock-space dimension dp (dr) remains
constant as the number of particles is changed.

Unless this condition is satisfied, the conventional tech-
niques of second-quantized many-body theory cannot be
applied. Arguably, the key step in Laughlin’s [5] seminal
treatment of the FQHE, so far the only established physi-
cal application of fractional statistics [2], was to aban-
don conventional second-quantized methods, which had
proved fruitless, and return to a first-quantized descrip-
tion.

In the FQHE, the Pauli-like definition of statistics in-
troduced here can be related to the braid-group notion of
2D statistics [1]. The basic model for 2D anyons is the
charged flux tube [1]. I will use units where e =h =¢
=1, in which the London flux quantum ®q is 2z. If an
object carrying flux ¢, and charge g, orbits around
another object carrying flux ¢, and charge g,, the Bohm-
Aharonov phase change of the wave function is

exp(i0),) =expl—i(q102+¢g201)]. 4)

(3)

If they are identical, the Bohm-Aharonov phase factor for
interchange in exp(if;)=exp(i6,,/2). Anyons with an
aribitrary statistical parameter 8, are modeled by bosonic
flux tubes with g,¢,=6,.

In the FQHE, the quasiparticles of the Laughlin states
have the character of vortices [5], with dynamics derived
from quantizing the Eulerian dynamics of point vortices
in an incompressible, inviscid fluid (which do not carry
kinetic energy), rather than the Newtonian dynamics of a
massive particle. The “guiding center” coordinates of the
vortex do not commute:

[R¥,R¥1=il’5;;qie"" . ©)

Here 2712 is the area per particle of the underlying fluid;
the integer g; is the circulation of the ith vortex in units
of the elementary circulation quantum of the fluid.

The commutation relations (5) imply [6] that the vor-
tex cannot be localized in an area smaller than the mean
area per fluid particle, and states representing the vortex
centered at different point are nonorthogonal; for a fluid
with open boundary conditions, the number of indepen-
dent states of a vortex is N+1, where N is the number of
particles in the underlying fluid. These particles act as
quantized sources of “flux” (¢ =2z per particle); (5) im-
plies that if an elementary quantum vortex carrying
“charge” =1 moves around a closed path, its wave func-
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tion picks up a phase factor that counts the mean number
of particles enclosed by that path. (This complements the
result that a fluid particle moving around a closed loop
picks up a phase that counts the total vorticity inside the
loop, forcing quantization of the circulation around a vor-
tex [6].) The model for a fractional-statistics vortex is
one which locally has a mean excess or deficit of fluid
particles as compared to the mean fluid density in its ab-
sence. This is only well defined in an incompressible fluid
[6].

The noncommutativity of guiding-center coordinates
makes vortex wave functions equivalent to the Jowest-
Landau level states of a charged particle in a magnetic
field. The FQHE quasiparticles can thus be modeled by
flux-carrying charged bosons in the lowest Landau level.
If there is a total flux @ through the system, the number
of independent single-particle states in the Landau level
for bosonic particles carrying charge g, is d, =q,®/2x. If
the particles carry flux ¢,, the total flux ®, and hence the
{dJ}, change as particles are added, and g3 = — q,95/27.
The relative statistical phases 6,5 for windings of particle
trajectories are thus identified as exp(if,) =exp({ingaq),
and exp(i6,5) =expllin(gas+gp.)]. (An overall handed-
ness {= * 1 remains undefined.) Note that the statisti-
cal interactions g,s convey more information than the sta-
tistical phases, which are ambiguous modulo 2z.

The Laughlin FQHE states at the primary Landau-
level fillings v=1/m have two vortexlike excitations,
quasiparticles and quasiholes. In this context, fixing the
boundary conditions means fixing BA/®y=Ng, the total
magnetic flux (in units of the flux quantum) passing
through the system. Let there be N ¥ quasiparticles and
N 7~ quasiholes: The number of electrons NV is then given
by [71 No=m(N—1)+N~"—N7*. The Hilbert-space
dimension d + for both quasiparticles and quasiholes is
[71 N+1. Changing Nt and N~ by multiples of m at
fixed No gives g,+ = F 1/m, a= *. The agreement be-
tween the Hilbert-space counting definition of statistics
and the anyon definition in this case is no accident: Like
the statistical phase, the Hilbert-space dimension can be
obtained from the Bohm-Aharonov-like Berry’s phase for
adiabatic transport of a quasiparticle around a loop, in
this case one encircling the entire fluid.

The dimension-independent definition (2) of fractional
statistics opens up possibilities of non-2D applications. In
principle, fractional statistics would be recognized by the
presence of bands with an unusual (and variable) number
of single-particle states, not given by simply counting the
number of unit cells or atoms in the condensed-matter
system.

As an example not restricted to two spatial dimensions,
I consider spinon excitations in a spin-3 quantum anti-
ferromagnet with a nondegenerate singlet “resonating
valence bond” (RVB) ground state [8] without magnetic
order: These may be thought of as isolated unpaired
spins [9] in a RVB background of paired spins. The spin-
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on is a spin-+ object coming in two species, labeled by
If there are N spins and N, spinons, the num-
ber of unbroken bonds is (N —Ny,)/2, which must be an
integer. I identify the spinon Hilbert-space dimension d,
as 1+ (N — Ny,)/2, independent of o.

This can be understood as follows: A given spinon can
occupy the site it is initially on, or it can be moved to a
site that is part of a pair. But if |1(23)) represents a
three-site wave function where site 1 is unpaired and sites
2 and 3 are paired, nonorthogonality means that |1(23))
=(1/¥2)I|2(13))—|3(12))]. Hence only the combina-
tion [|2(13))+3(12))] is independent of |1(23)). There
is thus only one extra independent spinon state per bond.
This reduction of apparent Hilbert-space dimension by
nonorthogonality of states describing localized topologi-
cal defects at different points in space is also seen in the
FQHE example, and seems to be the fundamental
feature of fractional statistics as defined here.

The statistical interaction between spinons is thus given
by goo'= L independent of spin. It can now be verified
that the full Hilbert space of the spin system is spanned
by the semionic many-spinon states, with no over or un-
der counting. The total number of states is obtained
using (3). At a given spinon number, the number of
many-spinon states is equivalent to the number of ways to
place Ny =N+ N bosons in 2x[1+ (N —N)/2]
orbitals; taking the background RVB state to be nonde-
generate [10], the full Hilbert-space dimension is

I (N=Ny) (N+1)
5 1+(—1 ’] .
’ EL[ (=D N (N —Ng+1)!

]
o== 7.

6)

This is 27, as expected, showing completeness of the spin-
on description. Note that this discussion has not involved
properties of the Hamiltonian, except perhaps through
the assumption of a nondegenerate ground state. Howev-
er, the spinon description will only be useful if the ele-
mentary excitations do indeed have spinon character.

Explicit examples of the above scenario are provided by
spin- 5 antiferromagnetic Heisenberg spin chains, in the
gapless phase which at low energies is described by the
level k=1 SU(2) Wess-Zumino-Witten conformal field
theory (CFT) [11]. One example is the nearest-neigh-
bor-exchange Heisenberg chain solved by Bethe [12];
however, the clearest and most explicit example is provid-
ed by the S = § Heisenberg chain with inverse-square ex-
change [4,13,14] (ISE model), which also generates the
k=1 CFT. The ISE model has the same state-counting
rules as Bethe’s model, but has a much simpler spectrum,
allowing its thermodynamics to be constructed explicitly
in closed form [4]. It is also deeply related to Laughlin’s
v=1 boson FQHE state [5], making a fractional-
statistics interpretation very natural.

If N is the (even) number of sites, the spin-singlet
ground-state wave function of the ISE model can be
written in two forms [13] directly related to Laughlin
FQHE wave functions [5]: The first form (expressed in

terms of the N/2 sites {n;} “occupied” by reversed spins)
is the Laughlin-Kalmeyer form [15], now defined on a
1D rather than a 2D lattice. This is a direct transcription

of the v=1 bosonic FQHE wave function. If z(n)
=exp(2nin/N),
v=T1l0)—zm0)1T1z(0). @))]

i<j i
The other form is the n=2 case of the SU(n) singlet
wave function where {oy,...,on|¥) vanishes unless
260‘,,”=N/n, when it obtains from the antisymmetric
Slater determinant function ¥ ({z,,,0,:}) given by

I—I (Zm -z, )6(am,cr”)(l.)sgn(a,,, —o,) , 8)
m<n
with *“spatial coordinates” {z,n} chosen to be a permuta-
tion of {z(m), m=1,...,N}. Up to a spin-independent
factor, (8) is the ground state of SU(#n) fermions in 1D or
filling the lowest Landau level in 2D [16].

The great simplifying feature of the ISE model is that
there are no spin-dependent interactions between the
spinons [4]. The spinon states form a band of 1+ (N
—Ngp)/2 states with a spin-independent statistical in-
teraction g, = %, just as predicted by the general argu-
ment given here. For a fixed N, a spin- + bosonic Fock
space is the most appropriate description: The eigen-
states are characterized by sets of occupation numbers,
just as in the case of the ideal Fermi or Bose gases, except
that the energy is a quadratic (instead of linear) function
of the occupations. The full solution [4] for the thermo-
dynamics of the ISE model shows that occupation-
number distributions in a Fock space that varies with
temperature as the number of fractional-statistics exci-
tations changes have a role to play in the theory of
fractional-statistics systems.

Because of spin exchange between spinons (which is
marginally irrelevant at low energies) the Bethe-ansatz
model has a much more complicated solution; however,
from a study [17] of the adiabatic interpolation between
the two models, I have established that the total number
of complex rapidity strings in the Bethe-ansatz solution
(irrespective of their length) has the simple interpretation
as the number of unbroken valence bonds, (V — N,)/2.

The ISE-model spinon band covers half the Brillouin
zone (BZ), shrinks as spinons are added, and is gapless at
its termination points. If an analogous RVB ground state
can occur in some higher-dimensional model without
symmetry breaking that reduces the BZ volume, or leads
to a degenerate ground state [10], the result for d, ob-
tained here requires the existence of a surface enclosing
half the BZ volume which would mark the gapless bound-
ary of the spin band. (The normalization of Bloch-state
combinations of localized spinon states will diverge as this
boundary is approached from the interior.) This scenario
resembles that of the “pseudo-Fermi surface” which An-
derson has predicted [8] to characterize a gapless 2D
RVB state. The ideas developed here suggest that gap-
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less Fermi-surface-like structures, and a generalized,
fractional Luttinger-type relation between volume en-
closed by such surfaces and quasiparticle number, may be
a new type of collective behavior in two or more dimen-
sions.

In the examples discussed so far, the fractional statis-
tics emerges in the properties of elementary excitations of
models built microscopically out of conventional objects
such as electrons. In the anyon gas model [1], a Chern-
Simons gauge field is added “by hand” to a model of con-
ventional particles to produce Bohm-Aharonov phases as
the particles orbit each other. A lattice-gas version of the
model which satisfies the Hilbert-space extensivity condi-
tion consists of hard-core bosons (or spinless fermions) to
which Chern-Simons flux is attached [18]. Since addition
of a coupling to a gauge field does not affect Hilbert-
space dimensions, such particles are classified as fermions
by the definition proposed here.

The difference between the two definitions of statistics
in 2D—when applied to the anyon gas model—is trou-
bling: However, I note that the model has no true micro-
scopic derivation. A possible resolution of the discrepan-
¢y may be conjectured: The appearance of a Chern-
Simons field in the effective low-energy description of to-
pological excitations of a 2D condensed-matter state of
conventional particles may inevitably (as in the FQHE)
be accompanied by nonorthogonality of localized states of
the topological excitations, which reconciles the two
definitions.

The ingredients of a modified “lattice anyon” model
with an analog of Euler dynamics (appropriate to vortices
defined on the plaquettes of a dual lattice) can be
identified: If i is a “site” (plaquette) label, they are (a) a
site-diagonal one-body Hamiltonian H =¢yX;|i){i| and
(b) nonorthogonality, i|j)=S;;=8;;, which replaces ki-
netic energy as the generator of dynamics. The Hermi-
tian overlap matrix S;; has real non-negative eigenvalues;
the number of states in the band is the number of nonzero
eigenvalues S,, and the corresponding eigenvalues of the
one-body Hamiltonian are €yS,. If the rank of the over-
lap matrix is less than its dimension, the number of eigen-
states of H is less than the number of sites. In the many-
body case, the overlap matrix for a given particle (i.e.,
vortex) would depend on the number and positions of oth-
er particles, introducing both gauge interactions and frac-
tional statistics as defined here.

In summary, I have introduced a variant definition (2)
of fractional statistics that can be viewed as a generaliza-
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tion of the Pauli principle, and does not make reference to
spatial dimension. It produces consistent results when
applied to 2D Laughlin FQHE quasiparticles and spinons
in nondegenerate RVB states of 1D S = § quantum anti-
ferromagnets. However, it does not apply to 2D models
where Chern-Simons flux has been attached “by hand” to
conventional particles. Such models lack what appears to
be an essential element of fractional statistics as defined
here: nonorthogonality of localized particle states.

Finally, I note that temperature appears to play no role
in this approach, in contrast to a recent proposal [19] in
which “statistics” is identified with “local fermionic
charge.”
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