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We study the response of pinned flux lattices, under small perturbations in the driving force, below
and close to the pinning-depinning transition. For driving Lorentz forces below F. (the depinning force
at which the whole flux lattice slides), the system has instabilities against small force increases, with a
power-law distribution characteristic of self-organized criticality. Specifically, D(d)~d ~'3, where d is
the displacement of a flux line after a very small force increase. We also study the initial stages of the
motion of the lattice once the driving force overcomes the pinning forces.

PACS numbers: 74.60.Ge, 05.40.+j

Transport phenomena typically deal with either in-
dependent or collective motion of a large number of parti-
cles. In the latter, there is a high degree of coherence and
the forces between the particles are as important as the
applied driving force.

In this paper, we will study a highly simplified model of
the onset of collective transport in a disordered medium.
These systems are typically modeled by a large collection
of objects (in our case flux lines), interacting via some po-
tential, and moving in a random static medium under the
influence of a uniform applied force. Collective transport
arises when the interaction forces are as important as the
applied and random forces. Flux pinning in superconduc-
tors and charge-density waves are two examples of these
types of phenomena, which sometimes are grouped to-
gether under the general classification of “hysteretic phe-
nomena.” Randomly distributed defects are responsible
for the pinning of both flux lattices in type-1I supercon-
ductors and charge-density waves. Since this problem
has proven to be extremely difficult to study, we will focus
on a highly simplified model that we believe has some of
the essential ingredients. Also, we will use zero-tempera-
ture deterministic dynamics without inertial effects. In
spite of the apparent simplicity of these models, they are
far more difficult to tackle than the usual cellular-
automata toy models. For a detailed analysis of more
realistic approaches to the flux-pinning problem, the
reader is referred to the excellent presentations in Refs.
[1-31.

We are interested in the stick-slip dynamics exhibited
by simple models of flux lattice motion in a type-II super-
conductor. When a bias current is applied to the sys-
tem, a Lorentz force acts on the flux lines, some of which
are confined inside potential wells, which we model to be
parabolic. We have monitored the response of particles
(from now on to be called vortices) when an externally
applied force (e.g., Lorentz) is slightly increased. Of par-
ticular interest is the response (i.e., displacement of the
vortices) of the system at the threshold of instability.

Since our model is one dimensional (1D), it may ap-
pear to be more appropriate for charge-density waves
than for flux transport in type-II superconductors. How-
ever, 1D models have been fruitfully applied for many

years to describe the essential features of pinning and
critical current densities in superconductors [4]. Exam-
ples of these confined-geometry superconductors include
microbridges, constrictions, wires connecting two super-
conducting grains, and long Josephson junctions [1].

Bean [5] and de Gennes [6] have used a sandpile anal-
ogy to describe the critical state of a type-II superconduc-
tor with sites that pin the flux lattice. Extending this
analogy, we wish to explore the possibility that a super-
conductor in the critical state could exhibit self-organized
criticality (SOC), as has been suggested for real sand-
piles [7]. In our model, we perturb the system and watch
its collective (bundle motion of flux lines) response. We
study the change in the equilibrium positions of the flux
lines in two regimes: when the applied driving force is
well below the value where the whole lattice is in the
free-flow (sliding) mode and when the force is below but
close to this value. The presence of power-law behavior
over several decades would be an indication that the sys-
tem is in the SOC regime.

Previous numerical models of pinned flux lattices [8]
have considered Gaussian forms of the potentials describ-
ing the vortex-vortex and the vortex-pinning-site interac-
tions. Here we will go further in the simplification of the
model by using parabolic potentials. The principal ad-
vantage of this is that it greatly speeds up the calcula-
tions, enabling the use of simple relaxation techniques for
the dynamics. The enhanced speed also permits the per-
formance of hundreds of simulations which allows us to
do an ensemble average over a very large number of dif-
ferent configurations.

The pinning centers will act as parabolic traps for the
flux lines, and the potential acting on the ith vortex, Vp,
is approximated to be

Vm=z_§_”+_1__(x’,“_
J

TS xf)?2, for |xi —xf|<¢,, (1)

and constant for |x; —x7| > &,. Here x;, x7, and &, rep-
resent the position of the vortex, the position of the pin-
ning site, and the range of the pinning force, respectively.
The force exerted by a single well of this kind is such that
the applied force needed to take a vortex out of the well is
equal to unity. This will define an upper bound for F,,
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the externally applied Lorentz force that will bring the
system into collective free-flow motion. The vortex-vor-
tex potential felt by a particular vortex i is approximated
by

Vi= 2 A(|xf=xj| —&)2 for |xf—xjl=<é&., ()
JoJ=i

and constant for |x/ —x7| > &.. We will choose the vor-
tex-vortex interaction range £, equal to 1 and the prefac-
tor A, =20 to prevent vortices from jumping over other
vortices. If the driving force F; is applied in the positive
x direction, and friction is neglected, the total force that
acts on particle i is

7,’=_V,'Vp,'_v,‘V”'+FL. (3)

Exploiting the fact that &; is linear in x/, successive
configurations of the flux lattice can be calculated. This
is performed by updating x/ in such a way that &; van-
ishes, where we take as input the x| calculated in the pre-
vious step. Another parameter involved in the model is
the initial distance between vortices, a, that will deter-
mine the number of neighbors considered in the interac-
tion. We work in the range 0 < a <¢&,, in order to always
have interacting vortices. If L denotes the system size,
and N, the number of vortices, then alN, =L. In type-II
superconductors, a will be determined by the externally
applied magnetic field.

The simulations are performed by randomly distribut-
ing NV, pinning centers, with F; =0, and letting the vor-
tices relax. The applied force is then increased by some
very small amount AF; (here we will take AF;, =0.005),
and the lattice is again allowed to relax. This procedure
is repeated until the lattice starts to flow (i.e., the posi-
tions of all the vortices change by a large amount). This
happens when the driving force has reached the depinning
or critical value F.. All our runs have been done in sam-
ples with periodic boundary conditions.

For a given choice of NV, and /V,, the system exhibits
two regimes. When the Lorentz force is sufficiently large,
the vortices move freely. This can be denoted as the
free-flow or the “sliding” regime. For sufficiently low
values of the externally applied force, the system does not
move (“stick” regime), since the pinning sites anchor the
vortices in place. However, a sudden and very small in-
crease in the externally applied force will produce a shift
in the location of the vortex lines. We monitor the distri-
bution of these displacements for a wide range of parame-
ters (F,N.,Np,a,E,, .. .). Part of the difficulty in study-
ing this type of system is the large number of parameters
that need to be varied in order to explore the huge phase
space available. We have only fixed £&. =1 (thus our unit
of length becomes &), A. =20, and the individual depin-
ning scale, F. =1, for one vortex in one pinning site. One
of the signatures of SOC is the multiscale response of the
system when a small perturbation is applied to the sys-
tem. We have computed a very large number of such
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response distributions and a few of them will be presented
and discussed below.

Figure 1 shows FET which is the critical force averaged
over 500 different configurations of the pinning lattice.
The error bars are the standard deviations in the effective
force. The plot shows how the collective depinning force
varies as a function of the number of pinning sites. We
observe that the depinning force increases monotonically
when the density of pinning sites increases. These curves
provide the phase boundary between the pinned and de-
pinned regions as a function of the model parameters.

Let us now focus on the regime below the depinning
transition, where a very small increase in the applied
driving force produces small displacements in the vortex
locations. In this regime, we have computed the magni-
tude of these displacements (Fig. 2) and the distribution
of these magnitudes. This distribution exhibits a power-
law behavior over several decades. More importantly, we
have found that this power-law dependence exists over a
wide range of parameters. Power-law distributions of this
type are a signature of SOC. As in other studies of this
general nature, limitations in the model result in upper
and lower cutoffs in the power-law dependence. The
upper cutoff corresponds to the distance between vortices
a (recall that our choice of 4. =20 did not allow crossing
of vortices past each other). The lower cutoff corre-
sponds to the maximum allowed margin of tolerance used
in the relaxation runs in order to obtain the desired con-
vergence (0.0009 in this work). Previous simulations [7]
in systems that exhibit SOC were performed by introduc-
ing a local perturbation. Here the perturbation (a very
small increase in the force) is global, and it is the pres-
ence of disorder and interactions (vortex-vortex and vor-
tex-pinning) that makes the system evolve to a state
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FIG. 1. Effective critical force (FST) vs number of pins (V,)
for different parameters [a =0.9 (x), a=0.6 (0 ), a=0.3 (1),
and a=0.2 (@)]. N. is constant and equal to 30 and the pin-
ning range is set to £, =0.25. The lines are a guide to the eye
and a few error bars are slightly shifted (horizontally only) to
avoid overlap.
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FIG. 2. Evolution of the normalized distribution of displacements [D(d) vs d] during the force increase for a =0.9, &, =0.50, and
various pinning site numbers. In order to improve the statistics the results have been averaged over a range of applied forces, given
below. Note that for weak pinning, SOC behavior is observed in only a portion of the range of displacements. (a) F, =0.09-0.11
and V. =10, (b) F,. =0.09-0.11 and N.=75, (c) F;. =0.09-0.11 and N.=150, (d) F; =0.14-0.16 and N. =10, (¢) F, =0.14-0.16
and N.=75 (the dashed line has a slope of —1.3), (f) F;, =0.14-0.16 and N.=150, (g) F,=0.39-0.41 and N.=75, (h)

F1.=0.39-0.41 and V. =150, (i) F, =0.59-0.61 and N. =150.

where very small perturbations generate responses at
many length scales.

Though we do observe the power-law dependence over
a wide range, it is not observed over the whole range of
parameters inspected. For very low pinning densities,
there is a wide peak in the distribution corresponding to
very small displacements that we believe is due to free-
moving (unpinned) vortices. These (recall that we are
still below the depinning transition) are a subset of the
total number of vortices, V., and can only move a short
distance before they are stopped by other pinned flux
lines. At higher densities of pinning sites, these free vor-
tices become scarce.

The dynamics of the vortex current when the entire lat-
tice begins to flow is monitored by counting, at each
iteration of the equations of motion, the number of
votrices that have crossed a given reference point. In
most of the situations examined, the number of vortices

that cross the reference is a periodic function of the num-
ber of iterations.

In summary, we present a highly simplified model for
the response under very small perturbations of pinned
flux lattices in type-II superconductors in restricted ge-
ometries. We have made extensive numerical simulations
over a wide range of parameters, and we observe that our
model exhibits self-organized critical behavior over
several decades. Furthermore, this feature is robust over
a wide range of values of the model parameters. We be-
lieve this model describes features that could be observed
in superconducting microbridges, constrictions, wires con-
necting two superconducting grains, and long Josephson
junctions [1]. We hope that our calculations will mo-
tivate experiments in this direction.
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