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Susceptibility of Two-, Three-, and Four-Dimensional Spin Glasses in a Magnetic Field
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Through Monte Carlo simulations we have studied the spin-glass susceptibility of two-, three-, and
four-dimensional spin glasses in a magnetic field. We find that in four dimensions curves of constant
susceptibility curve upward as the temperature is lowered, in a manner indicative of the presence of a de
Almeida-Thouless (AT) line of phase transitions. In three dimensions the curves of constant suscepti-
bility also appear to curve up, although not as sharply. In contrast, in two dimensions we do not see indi-
cations of an AT line.

PACS numbers: 75.10.Nr, 75.40.Mg

The nature of the low-temperature phase of finite-
dimensional spin glasses has been a subject of some con-
troversy recently. There are basically two differing pic-
tures of the low-temperature state, which we will call the
mean-field picture and the droplet picture: The mean-
field picture is based on the replica-symmetry-breaking
solution of Parisi [1] for the infinite-range Sherrington-
Kirkpatrick (SK) model [2]. This solution has many
novel features, one of which is that at low temperatures
there are many thermodynamic states which are unrelat-
ed by symmetry. The other picture is the droplet model
of Fisher and Huse [3], which is related to previous work
by McMillan [4] and Bray and Moore [5]. In the droplet
picture, there are only two thermodynamic states related
by a global spin flip, and the important excitations at low
temperatures are "droplets" of overturned spins.

It has proven difficult to establish or disprove either of
these pictures. One would like to examine some measur-
able quantity which behaves qualitatively differently in
the two models. One such quantity is the distribution of
overlaps between replicas of the same system. The over-
lap between two replicas, a and P, is given by

P(q) = [(8(q —q.p))], (2)

where (. . . ) denotes a thermal average, and [ ]
denotes an average over disorder. In the Parisi solution,
P(q) at low temperatures consists of two delta functions
which are connected by a continuous background. In the
droplet picture, since there are only two thermodynamic
states, P(q) consists only of the two delta functions.

Several groups have recently looked at this quantity.
Reger, Bhatt, and Young [6] have performed Monte Car-
lo simulations to determine P(q) in the four-dimensional
spin glass, for systems of sizes up to 6 . Their results in-
dicate that P(0) is independent of system size, although
they are limited to rather small sizes. Recent I/d expan-
sions [7] have shown that certain of the predictions of the
mean-field picture are enhanced as d decreases from

q,p= —QS;S; .
I

The probability distribution of the overlaps, P(q), is then
defined to be

infinity, but this does not directly address the question of
low-dimensional spin glasses. Another recent Monte
Carlo simulation [8] has looked at P(q) and other quan-
tities and has claimed to support the mean-field picture,
but does not clearly distinguish the behavior from the
droplet picture [9].

A second qualitative diff erence between the two pic-
tures is the behavior in a magnetic field. The SK model
has a phase transition in a magnetic field at the de
Almeida-Thouless (AT) line [10]. In the droplet picture,
Imry-Ma arguments [3] indicate that a finite-dimensional
spin glass will not have a transition in a field, since a field
chooses orientations for the droplets, destroying the long-
range order.

In a recent paper Singh and Huse [11] have argued
that a way to distinguish between the droplet and the
mean-field pictures is to look at the spin-glass susceptibil-
ity [12] in a magnetic field. The spin-glass susceptibility
is defined to be

iso = lim —g [((S;S ) —(S;)(S,) ) '] .
1

w-- N; ~
(3)

If there is an AT line, then curves of constant susceptibil-
ity in the H-T plane must bend up as the temperature is
lowered, remaining above the AT line at which the sus-
ceptibility diverges. On the other hand, in the droplet
picture the susceptibility vanishes [13] for T=0 and
H40 and is infinite for 0 & T ~ T, and H =0, and there-
fore curves of constant susceptibility must go to H =0 as
T 0. In one and two dimensions (where T, =0) they
found that the curve of g~G =1 went toward zero field as
T 0. In three dimensions the results were ambiguous,
although the Pade approximants of high-temperature ex-
pansions behaved qualitatively differently than in two di-
mensions.

In this paper we have extended the work of Singh and
Huse by performing Monte Carlo simulations to look at
the susceptibility in two-, three-, and four-dimensional
spin glasses. An advantage of looking at ggG in the high-
temperature phase is that one avoids the problems of try-
ing to equilibrate the spin glass at low temperatures,
where the relaxation times are very long. Furthermore,
by looking at contours of constant gq~, that is by raising
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the field if ps~ is diverging at low temperatures, one
reduces the correlation length, again leading to faster
equilibration.

The Hamiltonian of our system is the usual Ising spin-
glass Hamiltonian

P =g J)S;5 +HgS;,
(ij) i

(4)

where S; = + 1, the double sum is over nearest-neighbor
spins, and the J;~ are independent random variables.
We have mainly looked at the ~J distribution,
P(J) =

2' [8(J —I)+8(J+ I)], but have also considered
a Gaussian distribution P(J) =(I/42rr)exp( —J /2),
where the results are similar. The sites are on a hypercu-
bic lattice of linear dimension L with periodic boundary
conditions.

The spin-glass susceptibility, Eq. (3), was determined
by numerically computing the overlaps between three
replicas [11]:

&so= lim [N((qI&) —2(qI2qI&)+(qI2) )],Q~ oo

where q II is defined above in (1).
We simulated systems of different sizes to check for

finite-size effects. In the two-dimensional simulations we

studied systems of size L between 32 and 64, in three di-
mensions, between 8 and 16, and in four dimensions, be-
tween 6 and 12. We checked that the values of gq~ did
not depend on system size for our biggest systems. We
averaged over between 25 and 500 samples for each data
point, depending on temperature and size.

In the simulations we repeatedly doubled the number
of Monte Carlo steps until we were satisfied that the sys-
tem had equilibrated. We have used two methods to
check for equilibration of the systems. One is to monitor
the variance of the susceptibility, which we determine
from the spread of values computed from different sam-
ples. The variance is caused by thermal Auctuations, by
changes in the values of g~G as the system equilibrates,
and by the spread in gsG due to the different bond
configurations in different samples. As the number of
Monte Carlo steps is increased, the first two contributions
to the variance vanish, and the variance reaches a con-
stant value. This occurs at a fairly well-defined number
of Monte Carlo steps, and we have taken this to indicate
that the system has equilibrated. Another way to moni-
tor equilibration, following an idea of Bhatt and Young
[14], is to compare overlaps both between different repli-
cas and between the same replica at different times. The
two measurements underestimate and overestimate corre-
lations and converge to the same value as the number of
Monte Carlo steps is increased. We found that the two
ways of checking for equilibration agreed fairly closely.
We also verified that the equilibration times are indeed
much shorter at high fields than at lower fields. For ex-
ample, at a temperature of 1.25 and for H =1.45 it took
about 500 Monte Carlo steps per spin to generate an un-
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FIG. 1. Contours of ps' =1 for the SK model and for one-,
two-, three-, and four-dimensional Ising spin glasses. Note that
the range of H shown is rather small. The two- three-, and
four-dimensional data are from Monte Carlo simulations; the
error bars are 1 standard deviation. The one-dimensional data
are from Ref. [11].

correlated configuration, whereas at a lower field H =1.0
it took about 4000 Monte Carlo steps.

Our main results are presented in Fig. 1, which shows
the contours of gqt- =1 from our two-, three-, and four-
dimensional simulations, as well as for the SK model and
for the one-dimensional spin glass. The error bars are 1

standard deviation. For all the systems the temperature
and magnetic field are divided by the appropriate mean-
field transition temperature T, ", which in the finite-
dimensional case is equal to JZ, where Z is the number
of near neighbors. In these units, the contour gq~ =1
starts off at I/J2 for all the models at high temperature,
and initially decreases as the temperature is lowered.

The two-dimensional spin glass in zero field has a
zero-temperature phase transition. In a field the curve of
g~~ =1 decreases in H as the temperature is lowered, for
the temperatures which we have simulated.

In the three-dimensional case the contour gq~=1 ap-
pears to have a broad minimum at a temperature some-
what belo~ the mean-field transition temperature and
then to turn up slightly. The actual transition tempera-
ture for the three-dimensional spin glass has been es-
timated in Ref. [15] to be 1.17, so T, /T, "=0.48. At
a field of 0.6, the transition temperature T, (H) for the
SK model has been reduced by a factor of about 2 from
the zero-field value. It seems compatible with the data
that there is a transition in a field for the three-di-
mensional model, and that T, has been reduced by rough-
ly the same factor as in the SK model. In four dimen-
sions it is possible to carry simulations out at a lower re-
duced temperature, due to the higher transition tempera-
ture. The transition temperature of the four-dimensional
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FIG. 2. The spin-glass susceptibility for the three-dimen-
sional spin glass at a field of H= 1.5 (H/T, =0.612). The
error bars are 1 standard deviation.

FIG. 3. Contours of gsG =1 for two-, three-, and four-
dirnensional spin glasses compared to series expansions from
Ref. [11].

~ J spin glass has been estimated [16] to be about 2.0,
which gives T, /T, = 0.71. In this case the contour of
gsG =1 has a definite upturn, and again the upturn is con-
sistent with scaling the mean-field AT line.

A slightly difrerent way to look at the susceptibility is
to look at gag at fixed H as a function of temperature.
This is numerically simpler to perform, since one does not
have to search parameters to determine where ggG =1. In
Fig. 2 we show gg~ as a function of temperature in three
dimensions for H=1.5, or H/T, "=0.61. As in Fig. 1,
the susceptibility is turning up in three dimensions, com-
patible with a divergence.

At the higher temperatures which we have simulated,
the location of the contour gq~=l becomes dificult to
determine, since gag goes to 1 as T ~ for all H. We
have therefore compared, in Fig. 3, our Monte Carlo data
with high-temperature series expansions [11]. The con-
tours from the series expansions are derived from particu-
lar Pade approximants. For each series, the diA'erent ap-
proximants agree with each other above T/T, "= l.
Above this temperature, the Monte Carlo data also agree
with the series expansions.

We have considered the possibility that even in the ab-
sence of a phase transition in nonzero field, the contours
of constant gag might be "repelled" from the area around
a finite-temperature zero-field transition, giving a spuri-
ous upturn. As a test of this possibility we have investi-
gated the spin-glass-type susceptibility [Eq. (3)] of the
three-dimensional Ising ferromagnet in a magnetic field
where there is no phase transition. At high temperature
the contour gsg =1 for the ferromagnet goes to a field of
J3. As T ~, all contours of @so & 1 bend down to the
H=O axis, and all contours with gag & 1 diverge to high
field. None of the contours with gz& ~ 1 show any signs
of nonmonotonicity as a consequence of being near a crit-

ical point.
Since we have mainly simulated the + J model, the de-

generacy of the ground state could also lead to upturns in
contours of constant ps~. We have checked this by
studying the one-dimensional + J spin glass. Above tem-
peratures of about 0.15, the contour gg~=l decreases
smoothly as the temperature is lowered. (Below this tem-
perature the eAects of the degeneracies lead to increases
in the susceptibility near fields of the form 2/n for integer
n. ) Since all of our simulations are performed at temper-
atures well above 0.15, and since we expect that the eAect
of degenerate ground states will be weaker in higher di-
mensions, we do not think that the eA'ects of ground-state
degeneracy could cause the upturns observed in higher di-
mensions.

In conclusion, we have simulated the two-, three-, and
four-dimensional Ising spin glass in a magnetic field and
computed the contours of constant susceptibility gsp =1.
These contours provide a means of distinguishing between
the mean-field and droplet pictures, as they give qualita-
tively diAerent predictions as to the behavior of gqp in a
magnetic field. In two dimensions the contour drops to
zero as the temperature is lowered, in agreement with the
droplet picture. In contrast, the contours show a mild up-
turn in three dimensions and a sharper upturn in four di-
mensions. Our data strongly suggest the presence of a
de Almeida-Thouless line of phase transitions in three
and especially in four dimensions.
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