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We study the criticality at the spin-glass-ferromagnetic-paramagnetic multicritical point in the d =3,
+ J distribution, random-bond Ising model. Using high-temperature expansions to order T ', we esti-
mate that the multicritical point 1V lies on the Nishimori line at T,/J=1.690+ 0.016. Along this line
the critical exponents are found to be y=1.80+ 0.15 and v=0.85 ~0.08. The latter is clearly consistent
with the rigorous exponent inequality v~ 2/d. We also calculate the crossover exponent p and show that
the scaling axes at N are in agreement with the recent predictions of Le Doussal and Harris.

PACS numbers: 75.40.Cx

An important issue in the study of randomly disordered
magnetic systems is the competition between spin-glass
and ferromagnetic order. While there are many experi-
mental systems where these two types of order compete
with each other leading to a complex phase diagram [1],
the spin-glass-ferromagnetic-paramagnetic multicritical
behavior has proven to be di%cult to investigate. In
theoretical studies of spin glasses such a multicritical
point N takes on added significance following the work of
Nishimori [2] who found that on a special line, in the pa-
rameter space of temperature and concentration of fer-
romagnetic bonds, many exact results can be obtained for
the random spin systems. Nishimori used these results to
put constraints on the topology of the spin-glass-ferro-
magnetic-paramagnetic phase boundaries. Following his
work and some early numerical studies [3], it was sug-
gested by Georges et al. that the multicritical point N
must be located on this line, which they called the Nishi-
mori line [4]. More recently, Le Doussal and Harris [5]
and Le Doussal and Georges [6] have presented compel-
ling renormalization-group and symmetry arguments for
the multicritical point to lie on the Nishimori line and
studied the multicritical behavior via 1/d and 6 —e ex-
pansions.

While the existence of the multicritical point on the
Nishimori line is now on firm theoretical grounds, our un-
derstanding of the multicritical behavior at N is far from
satisfactory in the experimentally relevant case of three
dimensions. Among the many studies for the d=3 case
[3,7,8] the most extensive one is by Ozeki and Nishimori
[8], who carried out Monte Carlo renormalization-group
(MCRG) studies for the + J model on large (32&&32
X32) lattices. For this model, the Nishimori line takes
the form 2p —I =tanh(J/kT), where p is the relative
concentration of ferromagnetic bonds. They estimated
that the critical point lies at p„=0.767+.0.004 (T,/J
=1.68+'0.025). They also calculated the critical ex-
ponents along this line using the MCRG method. They
obtained y/v=1. 97+0.1 and v=0.51+0.06. It was ar-
gued by Singh and Fisher [9] that these estimates were
inconsistent with the rigorous exponent inequalities of
Chayes et al. [10], which imply v) 2/d. Ozeki and
Nishimori [11] themselves later argued that their esti-

mate of the exponent v was in disagreement with the
rigorous result of a nondivergent specific heat, if one as-
sumed hyperscaling. Thus the study of the critical behav-
ior along this line has remained in an unsatisfactory state.
There has also not been a careful detailed study of the
phase boundary in the vicinity of this critical point, and
hence the multicritical behavior has not been elucidated
numerically.

In this paper we develop high-order power-series ex-
pansions for various susceptibilities of interest in the vari-
able tanh(J/kT) and study the multicritical behavior in
some detail. We find that along the Nishimori line,
T,/J = 1.690+ 0.016, which is in excellent agreement
with the MCRG estimate of Ozeki and Nishirnori. The
critical exponents along the line are found to be y=1.80
~ 0.15 v =0.85 ~ 0.08 and g = —0.10+ 0.02. These
are in clear disagreement with the MCRG estimates and
are fully consistent with the exponent inequality of
Chayes et al. It is shown that on one side of the Nishi-
mori line the ferromagnetic susceptibility has the dom-
inant singularity while on the other side it is the spin-
glass susceptibility that has the stronger divergence. This
implies that the multicritical point separating the
paramagnetic, spin-glass, and ferromagnetic phases lies
on this line. By studying appropriate derivatives of the
susceptibility we calculate the crossover exponent p and
find that the scaling axes at the multicritical point are (i)
along the Nishimori line and (ii) parallel to the tempera-
ture axis, in agreement with the predictions of Le Doussal
and Harris.

We consider the nearest-neighbor Ising Hamiltonian
on the simple cubic lattice, where the exchange constants
J; ~ are quenched random variables which take values
+J with probability p and —J with probability 1 —p.
For p = 1 one obtains the pure Ising ferromagnet,
whereas for p =

& one has the symmetric L- J Ising spin
glass, which has been studied in great detail [121. High-
temperature expansions for this model, for general values
of p, have been previously considered by several authors
[7]. Following earlier work, two-variable expansions in
powers of v =tanh(J/kT) and 2p —1, complete to order
v', were obtained for the simple cubic lattice by Singh
and Fisher [13] and for d-dimensional hypercubic lattices
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by Fisch [14]. In this paper, by considering loci of the
type

2p —1 =av,

with a constant, we have been able to calculate exact
high-temperature expansions to order v, this is the same
order as previously obtained for the symmetric case [15].
Previous studies of the symmetric ~ J model have
demonstrated the need for long series in these random
spin systems if one is to attain any reasonable assessment
of the critical behavior [15,16].

We study the susceptibilities [16]

and the square brackets to an ensemble average over the
distribution of J; ~. For m =n =1 we have the ferromag-
netic susceptibility g, for m =2, n =1 the spin-glass sus-
ceptibility gsG, and for m =2, n =2 an auxilliary suscep-
tibility g'. The expansions are obtained by the star-graph
method [15]. The ensemble average for any bond leads
to

[„,2n], 2n [„,2n+j] (2 1),2n+1 (3)

Along the loci of the type 2p —1 =av the odd powers be-
come av "+ . Hence, along these loci every bond con-
tributes only in even powers of v or J/T. This is the key
feature that allows us to carry out the expansions to
much higher orders [17].

Along the Nishimori line the series for the ferromag-
netic and spin-glass susceptibilities become equal term by
term. The expansions are [with w = tanh (J/k T) ]

g= 1+6w+30w +150w +654w +2982w +11790w +50694w +186990w

+788 038w + 2 730654w ' + 11 788 806w ' '+ 38 258 558w ' + 177911046w '

+523 031 214w ' + 2 741 914 182w ' +6 592 592 526w ' +42 207 777 222w ' +
g'= 1+6w +102w" —96w +1998w —3792w +37878w~ —113040w

+789 174w ' —2960928w ' '+ 17 558 862w ' —74528 976w ' +406 171 854w '

—1856049840w' +9672868326w' —46152643776w' + . - .

For noninteger values of a the expansion coefficients are
not integers. They are calculated on the computer in

double precision [18].
We analyze the series using first-order inhomogeneous

differential approximants [19]. We respect the function
f(w), whose power series in w has been calculated to a
given order N, as a solution to a first-order inhomogene-
ous differential equation,

PM( ) f +p ( )f p ( )+O( M+ + + )df
w

(4)

Here P]~, P2, and P3 are polynomials in w of order M, L,
and J, respectively. The polynomials are determined by
comparing coe%cients of w~ with 0 ~ j~ M+L+ J+1
in (4). Arbitrariness of an overall multiplicative factor is

removed by setting P 1 (0) =1. The solutions to the
differential equations have power-law singularities of the
form (w, —w) "at w, given by PP(w, ) =0, and y given

by P&/(dPP/dw) evaluated at w =w, .
We begin by analyzing the series along the Nishimori

line (a =1), where the ferromagnetic and spin-glass sus-
ceptibilities become equal term by term. For this series,
as well as for the auxiliary susceptibility g', we construct
all approximants which use fourteen or more terms of the
series with M&4, L&2, J&1, and M~L, M~ J.
This class of approximants, centered around the ones in-
variant [19] under Euler transformations (M, L =M —2,
J=M —2), were found to be internally most consistent
as found in the syinmetric case [15]. In Fig. 1 we present

histograms of estimated w, for the two series. We esti-
mate

w, =0.282 ~ 0.004, (5)

which leads to T,/J=1.690~0.016. This is in excellent
agreement with the results of Ozeki and Nishimori, who
find T„/J=1.68+'0.025. Let y and y' be the critical ex-
ponents for the g and g' series, respectively. In Fig. 2 we
present the estimates for these exponents, plotted against
the estimated location of the critical point. We find that
the exponent estimates are strongly correlated with the
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FIG. 1. Histogram of estimates of w, along the Nishimori
line. The shaded regions correspond to the g' series and the
unshaded regions to the g series.
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FIG. 2. Estimates of the exponent y (represented by
squares), y' (represented by circles), and y+p (represented by
stars) along the Nishimori line, as a function of the estimated

The box shows the final accepted values based on taking
w, =0.282+ 0.004.
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FIG. 3. Estimates of exponents v, p, and g as explained in

the text as a function of the estimated critical point w, .

location of the critical point as is invariably observed.
Accepting the central region of the estimate for uI, in (5)
we conclude that

y =1.80 ~ 0.15 y' =1.04+ 0.10. (6)

v =0.85+ 0.08 g = —0.10~ 0.02.

Thus we find, that while our ratio y/v is in agreement
with that of Ozeki and Nishimori, v itself is not. The es-
timates are clearly consistent with the rigorous bounds of
Chayes et al. [10].

Let us now consider the case a & 1. The phase diagram
is shown in Fig. 4. For a»1, the two series appear to
diverge along the same contour in the v-p plane with the
ferromagnetic susceptibility having a stronger divergence.
This is just as expected for a transition to a ferromagnetic
state. As a approaches unity from above, the uncertain-
ties in the series extrapolations increase. For a very close
to unity, the two series appear to diverge with similar ex-
ponents, but with the ferromagnetic susceptibility diverg-
ing first (i.e. , at a higher temperature). The critical ex-
ponents vary rapidly near the Nishimori point N, and
shou1d be regarded as effective exponents. We expect the
true exponents to jump discontinuously from the random
ferromagnetic value to the value at the multicritical
point. On the other side of the Nishimori line (a (1), a
similar behavior appears with the spin-glass susceptibility
diverging first, i.e., at a higher temperature. This is a

Assuming standard scaling, near the critical point, these
exponents can be expressed in terms of q and v as [16]

y = (2 —ri) v, y' = (1 —2g) v.

We note that the ratio of y to y' for approximants which
give roughly the same w, is nearly constant. Thus, to es-
timate v and g we group all approximants with roughly
the same w, . The y and y' values for these approximants
are averaged over, and q and v are calculated. These es-
timates as a function of w, are shown in Fig. 3. From
there we obtain

clear indication that the phase boundary in Fig. 4 for
a ) 1 is a paramagnetic-ferromagnetic phase boundary,
whereas that for a & 1 is a paramagnetic-spin-glass phase
boundary, in agreement with the earlier suggestions [4].
Far from the Nishimori line, the paramagnetic-spin-glass
phase boundary is obtained by monitoring the divergence
of the spin-glass susceptibility. Here, as in the symmetric
case [15], the uncertainties even in the location of the
critical point are very large. The ferromagnetic suscepti-
bility appears to be divergence free on this line, with pos-
sibly a weak nonanalyticity.

We now wish to obtain the scaling axes and the cross-
over exponent ttI at the multicritical point N. Based on a
symmetry argument Le Doussal and Harris have argued
that the Nishimori line is one of the scaling axis. Their t.

expansion around d=6 also suggested that the second
scaling axis should be parallel to the temperature axis. In
order to confirm this, we calculate the series expansions
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FIG. 4. Phase diagram for the ~ J distribution, random-
bond Ising model with p the relative concentration of ferrornag-
netic bonds and v =tanh(JjkT). The multicritical point N, and
the two scaling axes, one of them being the Nishirnori line, are
shown by dotted lines. Typical uncertainty in the boundary be-
tween paramagnetic (PM) and spin-glass (SG) phases is shown

by a vertical bar. The uncertainties in the paramagnetic-
ferromagnetic (FM) phase boundary away from the Nishimori
line are negligible on the scale of the diagram.
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for g, , =t t)gsG/tlt along the Nishimori line. The series coefficients are

g, , = 12w+ 120w -'+ 900w +4944w +27 708w + 119160w +592 884w + 2 180832w

+10781580w +34264536w ' +190208964w ''+506582880w ' +3555480156w '

+6 896033 208w ' +68 708 311 380w ' + 52 261 360 896w ' + 1 293 272 763 660w ' +
This series is analyzed by the same method as the others
The estimated exponent values are also shown in Fig. 2.
We obtain

y+p =2.3 ~ 0.15. (9)

The absence of the @+1 divergence clearly shows that
one of the scaling axes is given by p =p„ i.e., it is parallel
to the temperature axis. In other words, the multicritical
behavior has the scaling form

y v —2p+1
Zso =(p p. ) F

(p —p, ) ' (10)

where F(x) is the scaling function. This also implies that
the slope of the phase boundary dv, /dp diverges at the
multicritical point. Finally, by using the same method as
that used for v and g, we calculate the crossover exponent
to be

p =0.54 ~ 0.04.

We note that the susceptibility exponent on approaching
the multicritical point parallel to the temperature axis is
given by y/p.

In summary, in this paper we have investigated the
phase diagram and the critical behavior in an asymmetric
Ising spin-glass model via high-temperature expansions.
Clear evidence has been presented that spin-glass and fer-
romagnetic order interchange dominance on the Nishi-
mori line, confirming earlier conjectures that the mul-
ticritical point N separating ferromagnetic, spin-glass,
and paramagnetic phases must lie on it. The multicritical
behavior at N including the scaling axes and the critical
exponents have been estimated. We find that the ex-
ponent v along the Nishimori line differs significantly
from those obtained earlier by Ozeki and Nishimori, and
is fully consistent with the bounds of Chayes er al. [10].
We hope our work would stimulate further experimental
interest in studying this multicritical point.
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