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Excitonic Charge-Density-Wave Instability of Spatially Separated Electron-Hole Layers
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We use the Hartree-Fock approximation to investigate the ground state of a system consisting of spa-
tially separated electron and hole layers in strong magnetic fields. When the layer separation is larger
than a critical value a novel excitonic-density-wave state is found to have a lower energy than either a
homogeneous exciton Auid or a double charge-density-wave state. The order parameters of the state
satisfy a sum rule similar to that of a charge-density-wave state in a two-dimensional electron system. A
possible connection between the new state and a recent experimental result is discussed.
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Recently the properties of double-quantum-well
(DQW) systems in strong magnetic field have received
much attention. The evolution of the electronic ground
state as the well separation is varied has been investigated
both experimentally [1] and theoretically [2-4]. The
steps in the Hall conductance at odd integer values of
e /h are observed to disappear [1] when the barrier thick-
ness is increased. These quantum Hall eAect states,
which correspond to the filling factor v=n+ 2 for the
average electron density in each quantum well, have been
associated with the symmetric-antisymmetric (SAS) gap
of the DQW. The suppression of the SAS energy gap as
the well separation is increased has been suggested as the
cause of the disappearance of these steps [3].

A common feature revealed in the several previous
theoretical studies [2-4] of DQW's is that as the layer
separations are increased the dispersion relation of the
charge-density excitation develops a local minimum at a
wave vector on the order of the inverse of the magnetic
length. This minimum becomes a soft mode when the
separation reaches a critical value d, of the order of the
magnetic length. The system therefore undergoes a phase
transition. In this paper we identify this transition as the
one to a novel ground state which we call an excitonic
charge density wave (E-CDW) -state. This new state has
the properties of both an excitonic state and a normal
two-dimensional charge-density-wave (CDW) state.

The generalized system we study is the two-layer elec-
tron-hole system [5], with one layer containing electrons
and the other containing the equal number of holes
(v, =vh=—v). It can be realized either by the molecular-
epitaxy growth of the InAs-A1Sb-GaSb heterostructures
[6] or by applying a strong electric field to the GaAs-
A16aAs DQW's [7]. The layer width as well as the tun-
neling between the two layers will be neglected
throughout the paper, since they are not essential in the
EDCW transition. For v= 2, our system is equivalent to
the half-filled electron-electron DQW system studied in

Ref. [2]. At small layer separations, where the interlayer
Coulomb attraction is strong, electrons and holes pair to-
gether to form excitons. The excitonically condensed

state of the electron-hole pairs is then the preferable
ground state [5]. On the other hand, if the layer separa-
tion is much larger than the average intralayer distance
between neighboring particles, two independent Laughlin
states [8] or triangular CDW states [9] will give the
lowest energy of the system, depending on the filling fac-
tor v. Between these two limits, that is, when the layer
separation is comparable with the intralayer particle sep-
aration, the ECDW state appears. In this novel state,
both the excitonic condensation and CDW's exist. Furth-
ermore, the condensations of the excitons will occur not
only at K=O (where K is the wave vector of excitons)
but also at the wave vector of the CDW's.

We start with the general Hamiltonian of the elec-
tron-hole system in a strong magnetic field, assuming that
only the first Landau levels are occupied,

p, (q) =+ax, ax exp[iq, X —(ql) /4] (2)

and

pt, (q) =gb+, b+ exp[ —iq X —(ql) /4],
X

(3)

where X~ =X+'q~l /2, and L/2~X=(2trl /I—.)j
~ L/2, with j being an integer. ax (ax) and bx (bx) are
the creation (annihilation) operators of the electron and
hole wave functions in the Landau gauge.

In the normal uniform excitonic phase, as a result of

H=, g V;, (q)[p;(q)p, ( —q) —6,,e '&"''p;(())]
2L l,j,q

uP. (O) I P—h (o), —

where i,j =electron or hole, p is the chemical potential,
V„(q) = Vt, t, (q) =2tre /e~, and

V,h(q) = —2tre exp( —dq)/eq.

L is the linear dimension of the system and l
(=JAc/e8) is the magnetic length. The spin degrees of
freedom of electrons and holes are frozen by the magnetic
field. The particle density operators p(q) in the above
Hamiltonian are given by
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electron-hole interaction, electron-hole pairs condense
into a state with zero total momentum. The order pa-
rameter in this case is just (axb —x) which is finite for the
condensed excitonic state. Following Anderson's treat-
ment [10,11] of the collective excitations in superconduc-
tivity, we derived a set of random-phase-approximation
(RPA) equations for (p, (q)), (pi, (q)), and (d (q)) by
linearization of the equations of motion, where

2.0

— 1.5

- 1 .0

— 0.5

d (q)= +ax,—b —x exp[iq A (—ql) /4] (4) 0
0.0 0.1 0.2 0.3 0.4

0.0
0.5

is the creation operator of an exciton with a total momen-
tum Aq. From these coupled RPA equations we can ob-
tain the dispersion relation of the collective modes in the
excitonic state [12],

V
FIG. 1. The critical layer separation d, (solid line) and the

corresponding wave vector q, (dashed line) as a function of the
filling factor v.

ro (q) =(2v —1) [E,i, (q) —E,z(0)]
—4v(1 —v) [E,g(q) E,I, (0)] [E—,h(0)+E„(q) —(I/2@i ) [V„(q)+V,l, (q)]e ' }, (5)

exp — ~( l)' ( l)'
r 4

and

Q oo

(q ) dr J (ql 2
r) e (II ) /2 ld

~J 0

where E„(q) and E,I, (q) are defined as

]/2

E„(q)= e z
el 2

(7)

The negative values of co (q) for d )d, indicate the
existence of static CDW distortions in the new ground
state of the system. However, because of the coupling of
(p, (q)), (pl, (q)), and (d (q)) in the RPA equations men-
tioned above, the values of (d (q)) at the wave vectors of
the CDW's may also be finite and time independent. We
therefore define the order parameters of the ECDW state:

Here Jo(x) and Io(x) are the Bessel function and mod-
ified Bessel function of order zero, respectively. At
v= —,', the dispersion relation (5) is the same as that ob-
tained by Fertig [2] for a half-filled electron-electron
DQW. As has been noticed by several workers [2-4] in

the case of the half-filled electron-electron DQW's, ro (q)
of Eq. (5) becomes negative at ql —1.3 when the layer
separation d is increased beyond a critical value d, (v). A
plot of d, as a function of v is shown in Fig. 1; it defines
the phase boundary between the uniform excitonic state
and the new state (which we call the ECDW state). Also
plott
beco

Acnw(Q) = (p, (Q))exp
2zl (Ql)'
L 2 4

2+i'
( (Q)) (Ql)
ph p 4

and
r

( )'
ex 2 p

ed in Fig. 1 are the values of q, at which co (q) first where hcnw(0) =v, and [Q} are the wave vectors of the
mes negative, i.e., ro (q, ) ld =d„=0. ECDW. In the Hartree-Fock (HF) approximation the

Hamiltonian of Eq. (1) is decoupled to

H= Z [Ucnw(Q)~cnw( Q)(e ax, ax +e " bx, bx ) U (Q)[~*(Q)e ' " ax, b —x +H.c.]}
X,g

2—p pr (0) —
s p~ (0)—,Z [Ucnw(Q) I &cnw(Q) I

'+ Ucx(Q) l&ex(Q) I

']
2zl' q

Here, A'~ =A'~ Q~l /2, Ucnw(Q) is given by

(10)

2d
Ucnw(Q) =

2 8q o+ 2 [V«(Q)+ V,i, (Q)]e ' (1 —6g o) —E«(Q),

and U,„(Q) is equal to E,q (Q) defined in Eq. (7).
The Hartree-Fock Hamiltonian (10) can be diagonalized by a series of unitary transformations. In this paper we con-

sider only the simplest case, i.e., an unidirectional ECDW state having wave vectors [Q}=nQo, where
n =0, ~ 1, ~ 2, . . . . Qo is the fundmental periodicity of the ECDW. After the diagonalization of H in Eq. (10), the or-
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der parameters of the ECDW ground state at zero temperature are found to be

r I E,„(x)
e (Ago) =

2 ~ o
dx cos(nnx)

[[
and

(12)

pl Ecow(x) —p
&cDW(ngo) =

~ „~ dxcos(nnx) 1—
[EcDw (x) p ] +Ee„(x)

(13)

Here we have assumed that both h,,„and hcDw are real
quantities. E,„and Ecow are given by the following ex-
pressions:

E„(x)= — g U,„(ngo)h, „(ngo)

and

&& cos(nxx )

ECDWb) X UCDW(&go)+CDW(ngo)

(14)

xcos(nxx) . (15)

Since there is an infinite number of order parameters,
we introduce a cutoA' n, and set AcDW(ngo) and
A,„(ngo) to zero for In I

)n„. In general, for given values
of v and d, Eqs. (12)-(15) have a number of solutions

-0.55

Equations (12)-(15) are a set of self-consistent equa-
tions. To find the ground state of the system for given
values of v and d, we first assume some value for Qo,
solve Eqs. (12)-(15) for scow(ngo), d„„(ngo), and p,
and then minimize the expectation value EHF(go, d, v) of
the Hartree-Fock Hamiltonian (10) with respect to go.
EH p is given by

L 2

EHF(go d, v) =,g [UcDw(&go) l~cDw(ngo) I

'
2+i n

+U,„(ngo)IA, „(ngo) I ] . (16)

i
corresponding to diAerent kinds of states. Among them,
three solutions are of particular interest: the uniform ex-
citonic state [A,„(0)~0, dcDW(ngo) =A„(ngo) =0 for
In I AO], the double CDW state [dcDW(ngo) WO, h, „(ngo)
=0], and the ECDW state [ACDW(ngo)~0, &,„(ngo)
WO]. The self-consistent calculation has been carried out
for n, =8 at several diA'erent values of the filling factor.
In Fig. 2 the energy per electron-hole pair of these three
states is shown as a function of the layer separation for
v=0.23. The solution for the ECDW state exists only
when the layer separation is larger than some critical
value, and it asymptotically approaches the solution for
the double CDW state as the separation increases. For
d )d„ the ECDW state is energetically more favorable
than both the uniform excitonic state and the double
CDW state. The first three order parameters of the
ground state A,„(0), hcow(go), and h,„(go) vs d are
plotted in Fig. 3 for v=0.23. Starting from d=d„as
A„(0) drops rapidly, A,„(go) first increases, then de-
creases, and exhibits a maximum at d —1.9l. From Eqs.
(12) and (13) it can be easily shown that the order pa-
rameters of the ECDW state satisfy the sum rule

Z[I~cDw(Q) I'+ I~..(Q) I
'] = v,

Q

which is similar to that for a two-dimensional CDW state
[13]. More interesting is that the critical layer separa-
tions d, for the ECDW state and the corresponding wave
vector Qo, obtained from Eqs. (12)-(16), are exactly the
same (within 0.1%) as those values given in Fig. l. At
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FIG. 2. Energy per electron-hole pair in three diff'erent states
at v =0.23 vs the layer separation; e 2dv/e/' is the direct
Coulomb interaction energy of the system. The vertical coordi-
nates are in units of e'/el.
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FIG. 3. Variations of the first three order parameters in the
ECDW state at v=0.23 as a function of the layer separation.
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v=0.23, for example, we found that d, =1.34l and the
corresponding gol=1.31. We thus identify the phase
transition resulting from the soft mode of the collective
excitations in the uniform excitonic state as the transition
leading to an ECDW state, most likely a triangular
ECDW state. We believe this is also the phase transition
discussed in the works by Fertig [2], Brey [41, and Mac-
Donald, Platzman, and Boebinger [3]. Since in the new

state the ECDW can be pinned by the impurities in the
quantum wells, one should no longer expect the observa-
tions of the quantum Hall effects in the system, as the ex-
perimental results of Ref. [1] indicated.

In summary, we have found a novel ground state of the
electron-hole DQW's under strong magnetic fields, in

which an excitonic condensation and crystallization coex-
ist. The transition to such a state when the layer separa-
tion is of the order of the magnetic length is consistent
with the softening of the collective modes in the uniform
excitonic state. The study of the excitation energy spec-
trum of this novel state as well as the diagonalization of
the Hartree-Fock Hamiltonian (10) for a triangular
ECDW state are currently under way.
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