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Quasicrystallinity in Twist-Grain-Boundary Phases
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We present a simplified polymer model for twist-grain-boundary phases in liquid crystals. The ther-
modynamic phases of this model are characterized by an angle 2+a. There are incommensurate phases
with a an irrational number and commensurate phases with a =P/Q, with P and Q relatively prime in-

tegers. The latter have quasicrystalline symmetry for Q =5 or Q & 6. Equilibrium phases with all values
of a can be produced by varying a control parameter a. The curve a(a) is an incomplete devil's staircase
with finite locking intervals about every rational a.

PACS numbers: 61.30.8y, 61.41.+e, 64.70.Rh

The nematic-to-smectic-3 transition in liquid crystals
is strongly analogous [1] to the normal-to-superconduct-
ing transition in metals, with the unit vector n specifying
the direction of molecular alignment (the Frank director)
playing the role of the vector potential A. The analog in

liquid crystals of an external magnetic field in supercon-
ductors is molecular chirality, which induces a nonvanish-
ing twist, n (VX n), in the nematic phase. Superconduct-
ing order tends to expel magnetic fields (i.e. , VXA).
Nevertheless, in type-II superconductors, superconduct-
ing order and magnetic fields coexist in an Abrikosov
phase containing a regular lattice of vortices. The analo-

gy between smectic liquid crystals and superconductors
suggests that there should be the analog of the Abrikosov
phase in liquid crystals in which there is a regular array
of twist grain boundaries consisting of screw dislocations
and an associated nonzero twist, ko=n (Vxn). A theo-
retical analysis [2] based on the de Gennes model [1] in-
dicates that this new twist-grain-boundary (TGB) phase
in liquid crystals should consist of a stack of twist grain
boundaries each consisting of a lattice of parallel screw
dislocations whose axes precess in a helical fashion from
one grain boundary to the next. Independently of the
above theoretical investigations, a material exhibiting the
properties of a TGB phase (e.g. , x-ray diA'raction indicat-
ing the existence of smectic lamellae and optical proper-
ties of a twisted nematic [3]) was discovered. Subse-
quently, other materials exhibiting this remarkable new

phase have been found [4].
If 2za is the average angle between dislocations in ad-

jacent grain boundaries separated by a distance lb, then
ko=2tttt/lt, . Thus, a is a winding number which can be
rational or irrational. In the former, rotationally com-
mensurate (C) case, tt =P/Q for relatively prime integers
P and Q, and the system has quasicrystalline symmetry
[5,6] for Q =5 and Q ) 6. In this Letter, we wish to in-
vestigate some of the properties of these quasicrystalline
TGB phases and the nature of the phase transitions from
them to the rotationally incommensurate (I) phases.

Ideally, one would like to study these phases using the de
Gennes model [1] for the smectic phase. Unfortunately,
interactions among dislocations in real smectics are quite
complicated. We, therefore, introduce a simple model
system, in which dislocations are treated as interacting
nearly straight polymers [7]. This model exhibits C and I
phases analogous to those in real TGB phases. Though
our analysis will focus on ground-state properties (tem-
perature T=O), its qualitative results are valid at finite
temperature and thus applicable to real TGB phases. In
our model, polymers are confined to lie in a series of
equally spaced planes perpendicular to the x axis. Poly-
mer displacements parallel to the x axis could easily be
included, but they will not lead to any significant
modification of our results. In the absence of interplane
interactions, polymers in a given plane p are in their
lowest-energy configuration if they form a grating, which
we will call the reference grating, of N parallel lines of
length L separated by a distance l and aligned along

n~ =(O, sinO~, cosO~). There is a harmonic energy cost for
deviations from this configuration. Thus, we parametrize
the position of the kth polymer in plane p with the two-
dimensional vector

X~ k (w) =R~ k (w)+ u~ k (w)e~,

where e~ =(O,cosO~, —sinO~) is the unit vector perpen-
dicular to n~ and R~ k(w) =wn~+(kl+u„)e~, with w
=x.n„(0& w & L) a coordinate measuring distance
along n~. When u~ k(w) is zero, the polymers lie on the
reference grating with positions R~ k(w). The variable

u~ determines the translation of the whole grating paral-
lel to e~, whereas the displacement variable u~ t, (w) mea-
sures inhomogeneous distortions of the regular grating.
The latter has Fourier components q~0 in the first Bril-
louin zone of the reference grating ( —tr/I & q e~ & tt/I,
—~&q n~&~):

up k (w) =pe'q' ""
up(q) .

q
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The harmonic Hamiltonian for layer p is

Hp = —,
' ag„"dw[[dup 1(w)/dw]'

k

+2l [up t (w) —
up &+i(w)] J .

The parameter o. can be viewed as a line tension. When
o.=~, the polymers are forced to be straight.

We now consider interactions between planes. We
wish polymer lattices to rotate relative to each other like
the director in a chiral nematic, and we introduce

Hg = —,
' NLKg (Op+ i

—
Op

—2+a)
P

which is clearly minimized when the winding number
a=(Op+i —Op)/2x is equal to a. The bare winding num-
ber a is the parameter that forces twist; it is the analog of
the external magnetic intensity in a superconductor or the
chiral potential (controlled by molecular chirality) in a
chiral nematic liquid crystal. There is an explicit factor
of NL in Hq to make it extensive. Alternate, more micro-
scopic formulations in terms of the local unit tangent vec-
tors to polymers are also possible but unnecessary for our
present purposes. Finally, we introduce an interaction
among polymers in nearest-neighbor planes similar to
that among vortices in superconductors:

H;,i= —g d xd x'mp(x) mp+i(x')U(x —x')
P

= —Agmp( —q) mp+i(q)U(q),

where A =NLI is the area in the y-z plane,

6Hjpi c4+ [mp+] (q) +m„—~ (q)] 6mp ( —q)U(q)

(2)

Thus coupling between nearest-neighbor planes will in-
duce modulations in up q (w) at wave vectors n Gp ~ i of
the reference gratings in layers p 1. Minimization of
QHp+ SH;„,with respect to up(q) yields

up(nGp~ () =i2znl U(nG).,(nG, , )l'
—

in@P -+1

where

ep(q) =a[(q n„)+2l [I —cos(q. epl)]].

The phase of —iu„(Gp~ i) is equal to the phase nile+ i of
m„~i(nGp~i). Once modulations at nGp+2 develop in

layer p+1, they will induce modulations in layer p at
nG~+2 because of couplings in the 6'm~ Bmp+'f part of
H;„t. Thus, there will be modulations in each layer at the

in u, , (x).
We now turn to equilibrium configurations of the total

Hamiltonian. If o =~, m„(x)=mp(x) and

H;„,=Al icos(op —
Hp+ ~ )U(q =0),

p

and one can easily verify that a =a —psin2xa in equilib-
rium, where p=U(q=0)/2zrKl T.hus, the average wind-

ing number a is a monotonic increasing function of o; for
P & 1. When o & ~, up 1, (w) will be nonzero in equilibri-
um. The contribution to H;„,linear in up t, (w) is

dup 1, (w)
mp(x) =g dw n, + '

ep 6(x —Xp 1, (w))
d& 0

is the directed polymer density, and mp(q) =2 'fd x
xe 'q'"mp(x) is its Fourier transform. H;„,favors par-
allel alignment (i.e., ferromagnetic) of adjacent grain
boundaries if U(x) is positive and antiparallel alignment
if U(x) is negative. For real dislocations, U(x) is nega-
tive. The total Hamiltonian is thus H =H~+ H;„t
+gpHp. When cr=~ and uq p(w) =0, mp(x) =mp(x)
is the polymer density associated with the reference grat-
ing parallel to n~, with

mp(q) =l 'ge 'npaq „G

0. 8

0. 6

0. 4

where Gp =Gep with G =2'/1 and ttip =Gup The vector.

G~ is the basis for the one-dimensional reciprocal lattice
of the reference grating, and ttip is the phase of the funda-
mental density wave of that grating. When oA~, mp(x)
=mp(x)+Smp(x) has contributions arising from a non-
zero up p (x), with

6mp(q) = —(i/l)(e, xq)up(q)+O(up ) .

There are, of course, terms in 6mp(x) of arbitrary order

0. 2

0. 0
0. 0 0. 2 0. 4 0. 6

I
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FIG. 1. Schematic representation of the curve a(a). There
are commensurate states where a is equal to a rational number
P/g for a finite range of values of a followed by first-order
transitions to incommensurate states.

90



VOLUME 67, NUMBER 1 P H YSICAL REVIEW LETTERS 1 JUL+ 1991

fundamentals of all other layers, with u~ (nG~ ~, )/I
—(U/el )' if there are only nearest-neighbor interac-
tions. The phase of each u~ (n G~+, ) is determined
uniquely in terms of the reference grating phases

&r =Gu~ provided a is irrational. To lowest order in

U/el, the phase of —iu~(nG~+, ) is simply nfl +, . It is

straightforward to verify that the local minimum to the
free energy in which a is a monotonic increasing function
of a continues to exist for o. & ~. This minimum com-
petes with minima in which a locks in to a rational value

P/Q Th. e lowest-order locking terms can be calculated
using u~(q) =P, „u~(nG~+,)Bq „G,in Eqs. (1) and (2).
If a=P/Q, then there will be terms in H;„& of order
Ul (U/el ) +' that are not present when a is irration-
al. For U(x) )0, these terms favor P~ =P~~g if Q is

odd and P~
= —

pp ~ g+ sr if Q is even; for U(x) (0, they
favor pp

=
p~ ~ gy2 for Q odd, p~

= —
P~ ~ gg2+ z for Q

and Q/2 even, and p~ =p~ ~ gy2 for Q even and Q/2 odd.
Lock-in to a local isomorphism class for Q =2M+ I a

prime is brought about by couplings between displace-
ments at all wave vectors G, in the Q-fold star of G.
Terms of the form +~=, u~, 1„(q;)in H;„&are nonzero pro-
vided the sum of the Q wave vectors q; is zero. If
a =P/Q, then the sum of the Q basis vectors G~,
p =0, . . . , Q

—
1 is zero, and there are nonzero terms in

0;„tof the form

H;„P(p)—CI ~U(G)u (G )u (G )u (G )

(3)

(c)

(b) (d)
FIG. 2. (a) A polymer grating with displacements given by Eq. (4) with Q=5. (b) Experimental diffraction pattern obtained by

scattering laser light from the pattern in (a). The positions of the Bragg peaks in this pattern have fivefold symmetry as can be seen,
for example, by local pentagonal patterns of spots. The intensities, however, have only twofold symmetry. (c) Polymer
configurations obtained by superposing five patterns shown in (a) at relative angles 2xn/5 with n =0, . . . , 4. (d) Experimental
diffraction pattern for (c).
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and another with u~(G~ —M ) replaced by up+ ~ (G~+M+ ~).
As discussed above, the phase of ut, (Gt, ) is equal to Pt,
independent of p. Thus the phase of H;„it~ in Eq. (1) is

y~ =g, = —M P~+, . It can be shown that H;„,~(p)
—:( —1) cosy~ for U(x) )0 and that the lock-in energy
is minimized when y~

=
y independent of p, with y=z for

M even and y =0 for M odd. The angle y is simply the
sum of phases of the mass density waves associated with
the vectors G~ that generate the lattice with Q-fold sym-

metry. The value of y determines the local isomorphism
class [5,8] of a quasicrystalline structure if Q is a prime.
The lock-in energy H;„,~ is of order Al U(U/el ) ~,

where v(i =2+ (Q —1) /4. When U(x) & 0, yt, +~ =yt,
+z, cosyp+] = —cosyp, and higher-order terms are need-
ed to establish a local isomorphism class.

What can be said about the phase diagram of our mod-

el, or more specifically about the curve e as a function of
a'? In equilibrium, there will be a finite region around
each rational value of a=P/Q for which a=P/Q. If
U/el is sufficiently small, there will be transitions from
these rotationally commensurate states to rotationally in-
commensurate states with a irrational, with the fraction
of any interval in u for which e is rational less than 1;
i.e., the curve c vs a will be a sort of incomplete devil' s

staircase [9]. Much of our insight into commensurate-
incommensurate transitions is obtained from the discrete
Frenkel-Kontorova (FK) model [10] in which these tran-
sitions are continuous and occur via the formation of a
soliton lattice. In our model, the interactions favoring
lock-in are extremely nonanalytic, contributing only when
the angle between neighboring planes is a rational multi-
ple of 2z. There are, therefore, no solitons of the sort
that occur in the FIt' model, and we expect the C-I tran-
sition to be first order. We can estimate the width

6Qp/g ~
tt ttp/g ~, where ctp/g is the value of a for

which a=P/Q, of the lock-in regions by comparing the
lock-in energy with the strain energy in He —(NLK/2)
x (2tr6'apt@) . The result is Sap/g —(el /K) ' (U/
el')'+~i . A schematic representation of the curve a(a)
is shown in Fig. 1.

At finite temperature [11], fluctuations in u diverge
logarithmically with L in the I phase but are bounded in

the C phase. Nevertheless, one can calculate the diITer-
ence hF in free energy between the C and I phases as a
power series in T to obtain Sap/g(T). To leading order
in T, Sap/Q(T) remains nonzero for all P/Q. We expect
this result to apply to real finite-temperature TGB
phases. The width Sap/g(T) may, however, be unobserv-
ably small.

The patterns of wiggles and the x-ray intensities pre-
dicted by the above analysis are quite remarkable. If
there is Q-fold rotational symmetry, then u~ k(w) will
have Fourier components at all reciprocal-lattice vectors
in a quasicrystalline lattice with that symmetry. For Q
odd, the lowest-order contributions to tt~ t, (w) can be ex-

pressed as

M

u„t, (tv) = g [u, cos[G, R~ t (w)] +(s —s )],

where the coefficients u, are proportional to (U/el )'. A
similar expression applies to Q even. The polymer pat-
tern for Q=5 produced by Eq. (4) is shown in Fig. 2(a),
and its associated optical transform (diflraction pattern),
obtained by direct diffraction of laser light, in Fig. 2(b).
The polymer density, and thus the scattering intensity,
has Fourier components at every point in the fivefold re-

ciprocal lattice generated by the vectors G~, p =0, . . . , 4.
The polymer density, however, clearly does not have five-

fold symmetry, and the intensities in the Bragg peaks
only have twofold symmetry. The scattering intensity at

q, =0 from the entire set of rotated planes does have five-

fold symmetry as shown in Fig. 2(d). We have obtained
similar patterns for sevenfold and ninefold symmetry.
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