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Nondiagonal Response of Si by Inelastic-X-Ray-Scattering Experiments at Bragg Position:
Evidence for Bulk Plasmon Bands
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Inelastic scattering of x-ray photons from standing-wave fields is used to measure nondiagonal ele-
ments of the dielectric-response matrix of Si. A peak-valley structure for q & q, . is found, due to the fact
that bulk plasmon bands, split near the zone boundary, contribute with diAerent signs; hence, direct evi-

dence for the existence of plasmon bands is obtained. Such detailed studies of the response matrix, to-
gether with the proposed plasmon-band model, oA'er a new access to dynamical screening in an inhomo-

geneous electron system.

PACS numbers: 71.45.GI, 71.25.Rk, 78.70.Ck

plasmon-band model, which is described in the beginning
of this Letter.

In a homogeneous electron system the energy Amo of a
bulk plasmon satisfies a dispersion relation of the form

(2)

The interpretation of experimental studies of bulk
plasmons is generally based on mean-field theory for the
dielectric response [1]. Nevertheless, it is well known
that local-field effects due to the lattice-periodic electron
density of solids may influence the plasmon properties
[2,3]. One important consequence of lattice periodicity hcoo =@co +Poq =6

p Pq 1

should be the occurrence of plasmon bands and the for- where both the free-electron plasmon frequency to~ and
mation of plasmon band gaps [4]. Although there exist the constant P depend on the electron density. In an in-

quantitative estimations of band eff'ects for bulk plasmons homogeneous electron system with a lattice-periodic den-
[3,5], no experimental evidence for these effects in real sity, the plasmon frequency co(q) is periodic in reciprocal
crystalline solids has been given so far. space. Hence, the dispersion relation co(q) can be repre-

We offer in this Letter direct experimental evidence for sented in a bulk plasmon band structure co,,(q, ) [3,4] by
the occurrence of bulk plasmon bands, by making use of backfolding co(q) into the first Brillouin zone using a
inelastic scattering of x-ray photons from standing-wave reciprocal-lattice vector g„, so that q, =q —g„. v stands
fields [coherent inelastic x-ray scattering (CIXS)]. It has for the band index. This formal representation obtains
been predicted by one of us [6] that CIXS should provide physical significance when the interaction of plasmons is
the unique possibility to obtain direct experimental infor- taken into account. According to Nozieres and Pines [7],
mation about nondiagonal elements of the dielectric- the interaction of a q plasmon with a q+g plasmon is
response matrix. We will discuss our results in terms of a mediated by the gth Fourier transform of the electron

density, p(g), and can be represented by the Hamiltonian

H =X[M(lql)M(lq+gl»2m[p(g)q. (q+g)g(q)g( —
q —g),

8

where M(q) =4tre /q . Q(q) are collective plasmon coordinates, and all q+g should be restricted to values smaller
than the plasmon cutoff vector q, . Let us now construct an "empty lattice" plasmon band structure by backfolding
coo(q) of Eq. (1). Then by switching on the plasmon interaction according to Eq. (2), one obtains a system of linear ei-
genvalue equations,

[coo (q, +g ) —co (q„)( a (q„+g ) +P B(q„,g, g') a (q, +g') =0, (3)

whose eigenvalues co,(q, ) form the plasmon band structure. The eigenvector components a,(q„+g) can be interpreted
as probability amplitudes, whose squared modulus determines the probability to find a plasmon with wave vector q, +I
at energy itt co,(q„). The coefficients

B(q„g,g') =[M(lq. +gl)M(lq. +g'I)/4trt[«p(g' —g)[(q, +g). (q. +g')/coo(q. +g')~ (4)

define the magnitude of the energy gaps. Equations (3) and (4) constitute what we call the plasmon-band model.
Now let us assume that x rays, scattered by a lattice-periodic electron system, excite only collective modes with 6'-

function-like energy distributions. According to Fermi's "golden rule, " we obtain the double-differential scattering cross
section (DDSCS)

d a/dcod& =ro(co'/too)(eo. e') +~a, (q„+g„)~ 6(co —co,(q„)), (5)

if momentum q, +g, is transferred and an energy shift @co is observed. eo, coo and e', co' are the polarization vectors and

frequencies of the incident and the scattered photons, respectively. ro is the classical electron radius. Likewise we can
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express a general element of the dielectric-response matrix in terms of the plasmon-band model, when, following Ref.
[4],

Ime '(q, +g,q„+g', co) = —4x e'(~q„+g~~q, +g'~) 'ga, (q, +g)a,*(q,+g')6(cv —to„(q„)) . (6)

This relation will be fundamental for the interpretation of
our experiments.

Equation (5) suggested how to find experimental evi-
dence for the plasmon band structure: We had to mea-
sure the DDSCS for a momentum transfer of q=g, /2,
where g, is the shortest reciprocal-lattice vector for which

p(g) 40, so that, within the limits of a two-plasmon-band
model, the squared eigenvector components of the two
bands, ~a|&(g,/2)~, are of equal size. Under these ex-
perimental conditions we should expect a double-peak
structure in the DDSCS with peaks at to|2(g, /2) accord-
ing to Eqs. (4)- (6), separated by the gap energy
2hB(g, /2, 0,g, ). Additionally we had to take care that
g, /2 was smaller than the plasmon cutoA' vector q, .
These conditions could be satisfied for Si (q, =0.65 a.u. )
by g, =(2tt/a)(1, 1, 1), as first pointed out by Oliveira
and Sturm [5]. But we failed to detect the double-peak
structure when performing a conventional inelastic-
scattering experiment with q=(x/a)(1, 1, 1), which was
not surprising, since a band gap of 1.1 eV [5] is facing a
plasmon linewidth of 5 eV.

An alternative way to obtain experimental evidence for
plasmon bands is suggested by Eq. (6) and consists of
looking for experimental information about Ime (g, /2,—g, /2, to), a special nondiagonal element of the dielec-
tric-response matrix. Within the limits of a two-
plasmon-band model, the corresponding products a~ 2(g, /
2)a& z( —g, /2) of eigenvector components are equal in

size in both bands, but positive in the lower-lying (p-
type) band and negative in the upper (s-type) band, as-
suming p(g) )0. Therefore, if by any experiment the
nondiagonal response could be measured, the correspond-
ing spectra should exhibit a peak-valley fine structure,
which should be detected more easily than a double-peak
structure. This is the line we have followed in our experi-
ment.

Information about nondiagonal response is equivalent
to insight into local-field effects of the dielectric response.
This kind of information can be obtained only by means
of an experiment which is spatially selective rather than
spatially averaging. Conventional inelastic-scattering ex-
periments are spatially averaging due to the fact that the
primary photon state is a (nearly) plane wave, which ex-
cites every spatial position with equal probability. It has
been pointed out by one of us [6] that spatial selectivity,
and therefore access to nondiagonal response, can be
achieved by using a standing-wave field to act as a pri-
mary photon state of an inelastic-x-ray-scattering experi-
ment. The experimental realization is shown in Fig. 1.
Synchrotron radiation from the DORIS storage ring is
monochromatized to an energy of 7990 eV by means of a
plane double-crystal monochromator. A standing-wave

field with the required intensity distribution

I(r,y) =2 (y)+8'(y)+22(y)8(y)cos[g r+. Ap(y)]

(7)

DCM

SBCA

FIG. l. Experimental setup: DCM, Si(111) double-crystal
monochromator; SS, Si sample crystal; SBCA, spherically bent
crystal analyzer; Dl, detector 1 (for Bragg-reflected photons);
D2, detector 2 (for energy-analyzed radiation). Note that in

general the Bragg-diAraction plane of SS does not coincide with
the Bragg-diftraction plane of SBCA.

has been obtained within the nearly perfect Si scattering
sample as the result of coherent superposition of an in-

cident plane wave with a Bragg-reflected wave, where the
Bragg reflection may be characterized by the reciprocal-
lattice vector g. The partial-wave amplitudes A and B, as
well as their mutual phase shift Ap, are strongly varying
functions of a generalized incidence parameter y (see
Ref. [8]), which is +1 and —1, respectively, at the
bounds of the Bragg total reflection range. With the ex-
perimental setup, as sketched in Fig. 1, this incidence pa-
rameter can be varied and is completely determined by
the angular position of the sample crystal relative to the
second monochromator crystal, since both crystals consti-
tute a nondispersive double-crystal setting. Therefore,
the incidence parameter y can be controlled by the "posi-
tion" on the so-called rocking curve, which is the Bragg-
refiected intensity (recorded by detector 1) as a function
of the relative angular position of both crystals, as shown
in greater detail elsewhere [8]. Especially, the phase shift

4p changes from 0 to tr, when going from one fiank of the
rocking curve to the opposite one. The scattered photons
are energy analyzed in the so-called inverse geometry [9]
by means of the spherically bent Si(777) crystal analyzer
and recorded by detector 2. Thus we are measuring the
DDSCS for scattering off a standing-wave field with 2.5-
eV energy resolution and a q resolution of d,q/q = + 0.1.
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FIG. 2. Upper part: Rough experimental spectra (including the bottom of the quasielastically scattered line) of Si with tqt =0.51
a.u. for three different positions on the rocking curve as indicated in the inset. Vertical broken lines indicate the centers of the corre-
sponding spectra. Lower part: One diagonal term (D) and the nondiagonal term (ND) of the response matrix obtained from the
above data by means of a separation procedure [8] and an interpolation to constant data-point distance.

The exact expression for the corresponding DDSCS has been derived in Ref. [8] and is specified here for the case of a
centrosymmetric crystal structure:

d cr/dnidQ = —ro(ru'/4necop)[A (y')(ep e') Iq. +g. l
Ime '(q, +g„,q„+g„,ro)

+8 (y)(ez e') lq„+g'I Ime '(q, +g', q, +g', ai)

+2&(y)~(y)cos~p(y)(eo e')(ei, e') Iqr+gr I lq. +g'IIme '(q. +g„q, +g', ru)], (8)

where ep is the polarization vector of the Bragg-reflected
plane wave, and g' is defined by g'=g, —g. By means of
Eq. (6) we can introduce the plasmon-band model into
Eq. (8) and find that the interference term of the DDSCS
contains the desired information about terms of the form
a, (q, +g)a,*, (q„+g'), which will give rise to a peak-
valley fine structure at the zone boundary as pointed out
above, and can oAer evidence for plasmon banding.

In the upper part of Fig. 2 exemplarily measured spec-
tra for three different positions on the rocking curve (as
indicated in the inset) are shown. The difference in

height of these spectra is mainly due to the strongly y-
dependent absorption and extinction. The influence of
the interference term of Eq. (8) can be demonstrated by
comparing curve 1, corresponding to an angular position
of the sample far away from the center of the rocking
curve (y = —1500), and hence only determined by diago-
nal terms of the response matrix (shown as curve D, after
separation, in the lower part of Fig. 2), with curve 2 (3),

t
corresponding to Ap(y) =0 (=x) and for that reason
containing the relevant nondiagonal term (shown as curve
ND in the lower part of Fig. 2) with positive (negative)
sign. Hence, the peak-valley structure of the nondiagonal
term ND leads the center of curve 2 (3) being shifted to
lower (higher) energy loss when compared with curve 1.
After subtraction of both the quasielastically scattered
line (see the upper part of Fig. 2) and the background we
have separated out the interference term according to
Ref. [8l by measuring relative values of the DDSCS at
altogether seven positions on the rocking curve. The final
results are put on an absolute scale by using the f-sum
rule [10]. In Figs. 3(a) and 3(b) experimental nondiago-
nal elements of the Si response matrix for g=(2n/a)
x (1, 1, 1) and two different scattering vectors q=q„are
presented, where q ~ q, . As shown in Fig. 3 both q's
point to the (111) Brillouin-zone boundary. Therefore,
the lowest two plasmon bands around the L point should
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F1G. 3. Left-hand part: (a), (b) Experimental and (A), (B) corresponding model-calculated nondiagona] elements of the response

(q q+g ~). h g =(2~/a)(1. 1.1). Iq&'&. &A)1=0.» a.u. , Iq&b&, &a) I
=0.64 a.u. ; the end points of both q&„& &p & and q&» &a&

are on the (111) Brillouin-zone boundary, as shown in the right-hand part. The vertical bars in (A) and (8) indicate the energy posi-
tion of the &function-like plasmon resonances of the plasmon-band model. Right-hand part: position of the q end points on the
Brillouin-zone boundary.

be excited with nearly equal strength, so that a peak-
valley structure of the relevant nondiagonal element is ex-
pected within the limits of the plasmon-band model, as
pointed out above. This is exactly what we found experi-
mentally. The qualitative aspects of the fine structure are
confirmed by calculations according to the plasmon-band
model, shown in Figs. 3(A) and 3(B). The plasmon
dispersion roo(q) used is fitted to electron data [11]
(ruz „=17.96 eV, P, =6.45 eV/a. u. ); p(111)/p(000)
=0.223 is from experiment [12]. The vertical bars in

Figs. 3(A) and 3(B) apply to a &function-[ike energy
distribution for each plasmon resonance [see Eq. (6)],
and the solid curves correspond to Gaussian distributions,
whose width hco(q) has been fitted to empirical x-ray
data [13] [d,ro(q) =0.6+18.5q eV, q in a.u.]. The first

frequency moments of the experimental nondiagonal
terms fulfill the Johnson sum rule [10] within experimen-
tal error.

In summary we have shown that CIXS offers evidence
for the existence of plasmon bands by measuring nondi-
agonal elements of the dielectric-response matrix, and
presents detailed information about the response matrix,
which enables us to handle better the problem of dynami-
cal screening in an inhomogeneous electron system.
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