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Transitions to Periodic Structures in Block Copolymer Melts
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We study transitions to periodic structures in diblock copolymer melts including self-consistently the
concentration fluctuations, and expanding the density in multiple harmonics. The fIuctuations induce a
shift in the maximum scattering wave vector in the isotropic state which suggests that the chains stretch
near the transition. Transitions to 3D hexagonal lattices, 2D hexagonally packed cylinders, and bcc
structures are predicted. We find the periodicity near the transition: The chains contract in the bcc,
while they stretch in the other structures.

PACS numbers: 64.70.Dv, 05.20.—y, 36.20.Ey, 64.60.Cn

The synthesis of A-B block copolymer molecules has
led to new materials with unique properties. A net
repulsive interaction between the chemically linked A
and B chains drives the system to segregate locally into
A-rich and B-rich domains. The resulting equilibrium
morphologies are periodic arrays. ' Among the ob-
served microstructures are alternating lamellae domains
(1am), hexagonally packed cylinders (hpc), body-cen-
tered-cubic lattice of spheres (bcc), and bicontinuous
double-diamond nets (bdd).

The physical properties of an incompressible A-B
block copolymer melt are strongly dependent on the de-
gree of polymerization N, the block copolymer composi-
tion f=N~/N, and the elective interaction between 2
and B monomers g. When g is small the block copoly-
mer melt is homogeneously mixed. It undergoes a dis-
order-order transition (DOT) at g, . At the DOT the
blocks segregate forming an ordered structure of period-
icity d,

Far away from the DOT in the isotropic state (g 0)
the chains are random coils. In the ordered phases the
chains are expected to be perturbed. In the weak segre-
gation limit where the interface is large, the existing
theories assume that d scales with N', v= 2, i.e., the
chains remain unperturbed Gaussian coils near the DOT.
Experiments, however, suggest that in this limit, " and
even in the isotropic state, the chains are stretched, and
v =0.8, larger than in the strong segregation limit (sharp
interface), where v= —', .

Including the wave-vector dependence of the vertex q

functions in the Hartree analysis ' " of the transition,
we find that the concentration fluctuations induce a con-
tinuous shift in the wave vector of maximum intensity
k* as one approaches the DOT. The shift in k* to
smaller values suggests that the chains stretch in the
disordered state. We calculate k* as a function of g and
N, and the periodicity of the ordered morphology in the
weak segregation regime: While in the 1am and hpc the
chains stretch, in the bcc they contract.

For the first time the shift in the wave vector of max-
imum intensity in the isotropic and ordered states is pre-
dicted using the Hartree approximation. The two-,
three-, and higher-order wave-vector-dependent correla-
tion functions in the free-energy functional of block
copolymer melts allow us to calculate these eA'ects.

In the ordered state the density in the periodic struc-
ture is expanded in multiple harmonics. The multihar-
monic Hartree analysis predicts first-order transitions to
3D hexagonal close-packed structures in symmetric and
nearly symmetric systems. Transitions from the isotro-
pic state to hcp, hpc, and bcc are observed as the degree
of asymmetry increases. The 1am is predicted only when
the transition is nearly continuous (N ) 10, f—0.5 in
diblocks). Our study suggests that when weakly first-
order transitions to periodic structures occur, the 1am is
not always the equilibrium structure as was previously
found

The free energy of the disordered state is expanded in
a power series of the Fourier components of the order pa-
rameter,

F(pt, )/ktt T =Fo/ktt T+ (I/21)g pt p t /So(k) + (1/V3—!)gr, (k, k', k")p„pt, p„6(k+k'+ k")

+ (I/V4!)QI 4(k, k', k",k'")pt pt, pt, pt, &(k+k'+k"+k"') .

The order parameter hp(r) is the local deviation of p(r),
the concentration of monomer A, from its mean value f.
The So(k), 13(fkj), and 14(/kj) are functions of the
bare two-, three-, and four-monomer correlation func-
tions G;, , Gt~t„and Gott (i,j,k, i =A, B), calculated by
the random-phase-approximation method (RPA). '

In the mean-field analysis of Leibler (LMFA), So(k)
is the scattering intensity in the disordered state (the
RPA result):

l./S, (k) =g(x)/N 2g, —(2)

where x =k Na /6 and N is the number of segments of
length a (a~ =att) per chain. As Q(x) has a minimum
at xo, So(k) has a peak at ko which is g independent
and ko (f)—1/Ro —1/N' (Ro is the unperturbed ra-
dius of gyration). The peak intensity So(ko ) increases
with gN, and for f, =0.5 (when I 3=0) it diverges at
(gN), =Q(xo (f, ))/2=10.495.

In the ordered phase hp(r) has the symmetry of the
ordered structure. It is therefore expanded in a set of
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TABLE I. Compositional harmonic contributions to the free energy (az for the hcp is calculated using the close-packed ratio
c/a =J8/3, 1/a =43k */2).

1am

hpc
hcp
bcc
bdd
fcc
Simp1e

cubic 3 6

2

JX
1.0607

d3/2
J4/3

0
—121 i(k*)
—121 i(k*)
—48r, (k*)
—48r, (k*)

0

—6r, (k *i6/3)
—361 3(k*45/3)

0
—721,(2k */J3 )

0
—721 3 (410k */3)

—721,(2k */i&)

0
12n

~ [21 4(0, 1;k*)]
12n~[2I 4(0, 1;k )]

12n i [41 4(0, 1;k*)+ I 4(0,2;k )1
12n ~ [41 4(0, 1;k*)+ r4(0, 2;k*)]

12n, [31.4(0,4/3;k *) ]

12n ~ [21 4(0,2;k*)]

0
0
0

48n)I 4(1,2;k*)
48n ~ I 4(1,2;k * )

12n~ [I 4(4/3, 4/3;k*)]

(NP) contributions I 4(h„,i, h ~;a; k *) from the arrange-
ments + ' ++ ' ++ ' ++ ' =0 with q+ j+~+m de
noted by (I 4); . Therefore, (I 4); =(I 4); + (I 4);
+(I 4); . The terms in F~ q(a~, aq) are evaluated in a
similar way. ' The sign of (13); and the mean value of
a; are determined by minimizing the free energy with
respect to the phases [p(,'1} and a;.

The LMFA, however, neglects the eA'ects of Auctua-
tions. When the concentration fluctuations are self-
consistently included in the analysis (the Hartree approx-
imation), '' a first-order transition is induced at f, . This

. approach has been applied to block copolymers, ' con-
sidering I 3(jkj) and 14([kj) in (1) as [kj independent
(and setting k* =kp, the RPA result). Here we solve
the Hartree equations including the wave-vector depen-
dence of I 3([kj) and I 4([k)j in the analysis for the first
time, and find the shifting of k . We also include higher
harmonics in the Hartree analysis. In the Hartree ap-
proximation, transitions for k*&0 are never continuous;
a single set of plane waves in (3) cannot describe the
density distribution in the periodic structure at the DOT.
Furthermore, in the first-harmonic approximation the
hpc and hcp structures cannot be distinguished, nor can
the bcc and bdd.

The Hartree equations can be obtained by adding an
external field U(r) coupled to the order parameter in the
free-energy functional (1) as QUkp —k, and replacing pk
by gk+gk, F(pk) =F(gk)+G(gk, gk), where gk is the
mean value of the order parameter, and gk are the fiuc-
tuations about it, (gk) =0. ' Setting'' (gkgk) =S(k)6(k
+k'), gp=O (block copolymer melts are incompressi-
ble), and neglecting (gkgk gk ) in the relation (6G(gk,

)/kB) )=k0, one obtains the Hartree equation for U
and the scattering function S(k) =Bgk/SUk.

I 4(0 hkk', Ik I

= Ik'I ) + I 4(O, hkk', I k
I
&

I
k'I )/2]gk'g —k'/6

plane waves, whose wave vectors E; are the allowed re-
ciprocal vectors of the ordered structure. ' The first set
of n~ plane waves, the first harmonic, has IK '

I
=k*,

m =1, . . . , n]', n] is the number of nearest neighbors
(nn) in the reciprocal lattice, so the distance between nn

planes in the structure is d=2n/k*. The second set of
plane waves has IK I =amok*, m =1, . . . , nz , the'y con-
stitute the second-order harmonic. We recently studied
the LMFA for the 1am, hpc, bcc, and bdd structures in-
cluding harmonics up to order IK '

I
=3k*. ' For sim-

plicity consider only two harmonics,

2

Ap(r) = g a; g exp[i(rK ' +tli ' )]+c.c. (3)
m=1

In the LMFA the free energy of a given morphology is
obtained by replacing the wave-vector summations in (I)
by sums over the allowed vectors in (3), ' F/ke T
=Fp/kqT+F~(a~)+F2(a2)+F~ 2(a~, a2), where

F;(a;) =n;Sp '(a;k*)a; +(I 3);a; /3!+(I 4);a; /4! (4a)

(a~ =1 for all the structures and a2 is given in Table I)
and

F
~ 2 (a ~, a 2) = (I 3) ~ ~ qa ~ a 2/3 1+ (I 4) ~ ~ ~ qa ~

a 2/4!

+(r4) „»a,a2/4! . (4b)

The (r, ); and (I 4); result from evaluating (1) for the
ith harmonic. In the quartic term there are 6n; linear
arrangements K ' +K ' —K ' —E ' =0 denoted by
(I 4); =6n;I 4(0,0;a;k*), 12n; (n; —1) planar contribu-
tions of the form 14(O, h, ;a;k*) from the arrangements
IC ' —K ' —K ' + Ir. ' =0 with jism and

I
K ' + lt '

I

=h, (a;k*) denoted by (I 4);, and the nonplanar

S '(k) =Sp ' (k)+H(k)/2+I 4(0,0;k)gkg —k/3+ g [
k'w —k

86

where H(k) =(2~) 'fr4(o, hkk., Ik+k'I)s(k')d'k'.
Near the DOT, expanding S '(k') around k* and neglecting the angular dependence of I 4 in the integral, '

H(k) =I 4(0,0;f(k +k* )/2]' )2a/Jr, where a=k* /4xc, c =x*[6 [g(x)+NH(k)/2}/6x ] ./3 —x*[6 Q/
t)x ]„*/3, ' and r =S '(k =k*) is the inverse susceptibility.

The inverse susceptibility in the disordered state, rd =Sp '(k*)+I 4(0,0 k*)a/ pry, is obtained by self-consistently
finding the k for which S '(k) is a minimum. The value of x* vs gN is plotted in Fig. 1. The corrections in x* from
the RPA value xp decrease as N increases [x*-xp for g & 10 up to (gN) —(gN)&], k* —kp [1 —O(1/N)].
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In the ordered phase the order parameter takes the form given in (3). Evaluating Uk at k =K ' (and neglecting the
fluctuations of the second harmonic),

U~ =r~a~+ 2 (I 3)~ + —(14)P —
—,
' 14(0,0;k*)a~ + [F~ 2(a~, a2) —(I4)~~qza~az/4!],

2n~ 2n~
'

2n~ |)a~

with r
~

the inverse susceptibility in the ordered state

r
~

=So ' (k *)+ I 4(0,0;k * )a/ Jr ~
+B ~ a ~

+ (I 4) ~ ~22a 2/24n ~,

(6)

(7)

where B~ =(I 4)~/12n~+I 4(0, 0;k*) and (14)~~22 are 24n~nq terms that result from the arrangements E~' —K~'
—K(2)+K(2) =0 jn I 4([k] )

The free energy of the ordered phase A (k*) is given by

A(k*) = ([r((k*)—r~]/2+aI 4(0,0;k*)[[r~(k*)] ' —pry]) —
n~ at+ a~

]

+, a~ +F~,2(a~, az) —(I 4)~~22a~aq/4!+Fq(a2),
(r, )N'

which is solved using (6) (setting U~ =0), (7), and
rd(kd*), where kd is the wave vector of maximum inten-
sity in the disordered state. As near the DOT, a2 and
higher harmonics are two and higher orders of magni-
tude smaller than a~ for N & 10 (except for the hcp),
k* is determined by the growth of a]. In Fig. 1 we plot-
ted the value of x* that minimizes A(k*) vs gN. It is

common to fit the experimental data by a power law with
N and g. Though a single power law cannot describe our
results, in order to compare with the experiments we
found the best fit near the DOT: for the hpc and the
1am d —N', v C [0.83, 1], and d —g~ (P = v —

—,
' ), P

E [0.335, 0.5], close to the experimental values.
In the bcc the chains contract, v& —,

' (Fig. 1). We
have obtained k* for other metastable structures (higher
energy). In the fcc and simple-cubic structures (Table
I), the chains stretch as in the hpc. In the quasicrystal
with n~ =15 and (I"3)~ = —120I 3(k*) the chains con-
tract as in the bcc. When a is set to zero in the Hartree
equations [the LMFA (Ref. 14)], the d scaling with N
for the bcc is the same as for the hpc and 1am structures.
Therefore, the increase in x* with increasing N for the

~ 5~ SgggSgg ~ Qgg ~5 Ig

8

~Hy~
~~

bcc
000

3.6

3.3
10

o
O3

0
o Iam
0
0

11

~ h
b

b

hpc

12
X N

FIG. 1. x* =(k*Ro)'=k*'IVa /6 vs gN for f=0.6 (upper
curves), and f=0.5 (lower curves); @=12.19X 10 ' along all
the curves. The solid symbols correspond to the disordered
state. In the RPA xo =3.8429 for f=0.6 and xo =3.7849 for

f=0.5.

i
bcc is due to Hartree eA'ects which appear as soon as
o;&0. The Hartree analysis suggests that in 3D struc-
tures whose reciprocal lattice vectors form a large num-

ber of triangles the chains contract. '

The higher harmonics are important to determine the
equilibrium structure because the energy is very small
near the DOT. If only the first harmonic is considered,
the equilibrium structure for f E [0.5,0.5 ~ 6] is the

1am, the structure with smallest n~ (and the smaller the
N the larger the 6). A single-harmonic analysis, howev-

er, is valid when N ~. For finite N, as the hcp has
the smallest n2 and e2 values, it can be more favorable
than the 1am. The 1am appears only when N & 10 at
f-0.5. For N =10 the DOT is to hcp up to f—0.515
at (gN), —10.55; as f increases, the DOT is to hpc and
then to bcc [fcc is obtained for larger (gN), when the ap-
proach breaks down]. When N decreases, the width of
stability of the hcp increases. The minimization in k*
and the addition of higher harmonics in (3) yield lower
values of (gN), than the ones obtained by a single-
harmonic setting k* =ko ', for the 1am, (g, —g, )
—(F4a) 2~~3 —N ~ [1 —0(1/N) ]. When N decreases,
however, higher-order corrections need to be included in

the analysis. '

The phases (0 or x in centrosymmetric structures) and

amplitudes of higher harmonics are required to find the
density distribution inside the unit cell. ' For example,
the hcp studied here is a hexagonal array of cylinders
connecting lamellae layers perpendicular to the cylindri-
cal axes, resembling a "lamellar cantenoid. "

We conclude that the concentration fluctuations in-
duce a shift in k* in the disordered state near the DOT,
and that in an ordered state the chain deformation de-
pends on the structure. The multiharmonic Hartree ap-
proximation predicts DOT s to hcp when I 3 in (1) is

small (f—0.5), suggesting that the 1am is not the equi-
librium structure in the weak segregation regime.
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