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The chaotic properties of the interacting-boson model of nuclei are studied both classically and quan-
tum mechanically. Classical phase diagrams are constructed in the general parameter space of the
Hamiltonian known as Casten’s triangle. They lead to a discovery of a nearly regular region which is
probably related to an unknown approximate symmetry. Analysis of the quantal fluctuations of the
spectrum and of the electromagnetic B(E2) intensities confirms the classical results. The phase dia-
grams may be useful in identifying “chaotic” nuclei within the nuclear periodic table.
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The interacting-boson model (IBM) [1,2] of heavy nu-
clei has been successful in describing phenomenologically
the low-lying energy levels and electromagnetic transition
intensities of a large number of nuclei [3]. As an alge-
braic model with a finite Hilbert space it is relatively easy
to solve. In particular, when a dynamical symmetry
occurs it has a closed-form solution. The model is known
to have three dynamical symmetry limits which corre-
spond to vibrational, rotational, and y-unstable nuclei. A
system which possesses a dynamical symmetry is also
completely integrable, i.e., has a complete set of constants
of the motion in involution. When the dynamical symme-
try is broken the system may become nonintegrable. The
long-time dynamics of nonintegrable systems in few de-
grees of freedom has recently been a subject of numerous
investigations. Of particular interest is the onset of clas-
sical chaotic motion and its signatures in the associated
quantal system [4-6]. We have recently studied the tran-
sition between the rotational and y-unstable limits of the
interacting-boson model. While the system at these lim-
its is regular, as expected, it becomes mostly chaotic in
between. This was shown both classically [7,8] and quan-
tum mechanically [7] where statistical fluctuations of lev-
els and E2 intensities are described by the Gaussian or-
thogonal ensemble (GOE) of random matrices [9].

To study the onset of chaos in the low-lying collective
part of the nuclear spectrum it is important to investigate
the dynamics of the general interacting-boson Hamiltoni-
an. The purpose of this Letter is to describe these new
realistic calculations and in particular to present a strik-
ingly surprising result: the discovery of a new family of
IBM Hamiltonians which is characterized by almost reg-
ular dynamics and which does not belong to any of the
known dynamical symmetry limits. This family probably
possesses an unknown approximate symmetry which leads
to its regular dynamical behavior. Our result is especially
surprising in that it went unnoticed in a model which has
been studied extensively for more than a decade. We also
present for the first time classical phase diagrams which
describe the degree of chaos in the complete parameter
space of the IBM Hamiltonian. Our quantal studies
which include analysis of both the level statistics and the

B(E?2) intensity fluctuations are in accord with the classi-
cal results.

The general IBM Hamiltonian is constructed through
the generators of a U(6) algebra and is most economical-
ly parametrized in the self-consistent Q formalism [10]:

H=Ey+cofig+c0% Q*+c L. (1)

Here 7y =d"% d is the number of d bosons, L is the angu-
lar momentum, and Q7 is a quadrupole operator,

"= "*x5+s"xd) P+ xd)?, ()

which depends on a parameter y. The Hamiltonian (1)
has three dynamical symmetries for which it can be ex-
pressed in terms of the Casimir invariants of a chain of
subalgebras of U(6),

U(5)>0(5) ()]
u(6)>§y Su@B) (>0@13) an . 3)
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Chain (1) corresponds to c¢> =0 (vibrational nuclei), chain
(11) is obtained when co=0 and y= —+/7/2 (rotational
nuclei), and chain (III) is described by co=0 and y =0
(y-unstable nuclei).

A semiclassical (mean-field) description in which the
inverse boson number 1/N plays the role of A is obtained
[11] by using coherent states [12] |@)=|as,a—>, ..., a2
as discussed in Refs. [7] and [8]. To take the classical
limit N — oo we first replace @ by @ =a/~/N. Renaming
a by a, the constraint on the total boson number becomes
N independent, a’?=1. a and ia* play the role of canon-
ical conjugate variables for the classical Hamiltonian
h(a,a*)=(a|H|a)/N, where

h(a,a*) =ey+clnng — (1 —ndg* - q*1+&,1%. 4)

Here n4, g*, and I are c-functions obtained from the
operators 7y, Q% and L, respectively, through the re-
placement s¥,d} — a¥,a}¥ and s,d — a,,a,. Iis then the
angular momentum per boson. The parameters of the
classical Hamiltonian (4) are related to those of the
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quantal Hamiltonian (1) through

_Eo __u
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. . (5)
I _=—-% (o<p<1), e==2,
1—n Nc; n

Notice that relations (5) depend on the boson number N,
so that for fixed values of the parameters of the classical
Hamiltonian the corresponding quantal parameters de-
pend on M.

For a given angular momentum /% =const, ¢, does not
affect the character of the dynamics and we may choose
¢1 =0 and €, =0 with no loss of generality. By proper re-
scaling of the Hamiltonian 4 we may then take c=1. It
follows that the only relevant parameters are y and 7,
where —v7/2<x=<0and 0<n=<1. The U(5) limit is
then obtained for n=1, the SU(3) limit for n=0,
x=—+/7/2, and the O(6) limit for =0, y=0. The pa-
rameter space can be described by a triangle whose base
describes the y axis and its height, the n axis, as in Fig. 1.

SU(3) X o(e)

FIG. 1. Classical phase diagrams in the n-y plane for a given
! (spin per boson). Top: /=0.1; bottom: /=0.95. A point
(n,x) inside the triangle corresponds to a general IBM Hamil-
tonian of the form (4). The y value of a point inside the trian-
gle is given by the intersection with the n=0 line of a straight
line drawn from the upper vertex of the triangle through the
given point. The solid lines inside the triangle separate regular
(where the fraction of chaotic volume o is less than 0.3) and
chaotic (o> 0.7; dotted) regions. The hatched area is the tran-
sition region (0.3 <o <0.7). Notice in particular the regular
strip inside the triangle that connects the SU(3) and U(5) lim-
its. Also, at higher spins the system becomes less chaotic.

This is a rotated version of Casten’s triangle [13]. To
read the y coordinate for a point inside the triangle we
take a straight line from the upper vertex through the
given point and read its intersection with the n =0 line.
The three vertices of the triangle correspond to the three
dynamical symmetries.

To investigate the classical dynamics we have used
Monte Carlo techniques to calculate the fraction of
chaotic volume o on a given energy-angular-momentum
surface. A chaotic trajectory is characterized by a posi-
tive maximal Lyapunov exponent. Figure 1 shows a
“dynamical” phase diagram in the y-n variables for fixed
values of the classical angular momentum. Here o is
averaged over the energy. The regular region corre-
sponds to 0<0.3 and the chaotic (dotted) areas to
6>0.7. The transition regions 0.3 <o <0.7 are the
hatched areas. Our previous studies [7,8] were restricted
to the base of the triangle (7=0), where we have ob-
served a chaotic behavior for intermediate x’s in the tran-
sition between the SU(3) and O(6) limit. A similar be-
havior is observed in Fig. 1 along the transition line be-
tween SU(3) and U(5). The regular strip along the tran-
sition between O(6) and U(5) indicates that there is no
onset of chaos there. This is expected since along that
line O(5) is a common subalgebra and the two Casimir
invariants of O(5) are constants of the motion. Together
with N, L2, L,, and H they form a complete set of con-
stants in involution.

A surprising result is the narrow regular strip which
connects the SU(3) and U(5) vertices but is inside the
triangle. It exists in the same region of the parameter
space for any angular momentum. It is important to note
that strictly speaking the system is nonintegrable along
this strip since there are some chaotic trajectories. How-
ever, their fraction is small (¢ <0.3) and their Lyapunov
exponents are relatively small. The system is thus nearly
regular which suggests an approximate symmetry in this
region. This is a very interesting property of the family
of IBM Hamiltonians which was never noticed before.

The behavior of the dynamics as a function of spin can
also be deduced from Fig. 1. It is clearly seen that the
chaotic regions shrink at high spin. The study of the clas-
sical motion described by (4) allows us to find the depen-
dence of chaos on the excitation energy of the nucleus.
Figure 2 shows phase diagrams in the y-¢ plane (where ¢
is the excitation energy per boson) at a given angular
momentum / and which correspond to several values of n:
0, 0.5, and 0.7. These correspond to three cuts parallel to
the basis in the triangle diagram. The regular, chaotic,
and transition regions are defined similarly to Fig. 1.
From the n=0 diagram we see that the generic situation
for an intermediate y is that at low energies the motion is
regular but it gradually becomes chaotic at higher excita-
tion energies. When 1> 0 this singly connected chaotic
region breaks into two parts. The narrow transition re-
gion which separates them corresponds to points in the
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FIG. 2. Classical phase diagrams at constant / =0.1 in the €
(energy per boson)-y plane for n=0 (top), n=0.5 (middle),
and n=0.7 (bottom). Regular and chaotic regions are denoted
as in Fig. 1. emin denotes the lowest possible energy for a given
x- Notice that the chaotic region for n=0 breaks into two
disconnected regions for n=0.5 and 0.7. This is due to the reg-
ular strip of Fig. 1.

regular strip of Fig. 1. Thus, this newly discovered al-
most regular region does not become strongly chaotic at
any energy. Another interesting phenomenon is observed
in regions within the triangle to the immediate right of
the regular strip: As a function of increasing energy we
first observe a rapid transition from regular to chaotic be-
havior but then a much more gradual transition to a more
regular behavior at high energies.

Does the above regular strip show up in the quantal
properties of the model? To answer that we have studied
the corresponding quantal systems where the connection
between the parameters of the classical and quantal sys-
tem is given by Egs. (5). In the quantal model we have
investigated the statistical fluctuations of the spectrum
and of the B(E2) intensities. For the spectrum we use
two standard measures [4-6]: the level spacing distribu-
tion P(S) and the Dyson-Metha statistics A3(L). For the
E?2 J"— J” transitions we have analyzed the distribution
of intensities [14] P(y), where y=B(E2;i— f). See
Ref. [7] for details. Figure 3 shows the quantal results
for the J*=27 states. To obtain good statistics we have
chosen a relatively large number of bosons NV=25. We
emphasize, however, that similar effects are seen for more
realistic values of N. We chose a cut n=0.5 parallel to
the triangle’s base. We remark that J*=2% for 25 bo-
sons corresponds to / =0.08 (which is close to the /=0.1
case of Fig. 1). According to Fig. 1 the classical system
makes the succession of transitions chaotic— regular
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FIG. 3. Statistical fluctuations of the spectrum and the elec-
tromagnetic transitions in the quantal IBM Hamiltonian (1)
with V=25 bosons for n=0.5 [see Eq. (5)] and several values
of . Shown are the level spacing distribution P(S) (histograms
in the right column), the A; statistics (plusses in the middle
column), and the B(E?2) distribution P(y) (histograms in the
left column) for the J*=2"% states. The dashed lines are the
GOE limit and the dot-dashed lines are the Poisson limit. The
classical transition of chaotic— regular— chaotic— regular
observed in Fig. 1 as y changes between — 1.3 and O across the
n=0.5 line is reproduced in the quantal case.

—» chaotic— regular as y is increased from —+/7/2 to 0.
The respective values of y are shown in Fig. 3 from top to
bottom. The dashed lines in this figure describe the com-
pletely chaotic limit (GOE) while the dot-dashed lines
describe the integrable limit (Poisson). In the column
describing P(S), w is the parameter of the Brody distri-
bution [9] (o =1 for GOE and w =0 for Poisson). v in
the P(y) column is from the fit with a y? distribution in v
degrees of freedom [15] (v=1 for GOE and v decreases
towards O for a regular system [14]),

P.(p) =Ay"? " Texp(—vp/2(»)) . (6)

All the above three quantal measures are found to be
consistent with the classical results: chaotic for y=—1.3,
regular for y = — 1, chaotic again for y = —0.6, and then
intermediate for y = —0.3 and regular for y =0. Notice
in particular the regular character of the quantal fluctua-
tions for y=—1. This point is in the newly discovered
regular strip of Fig. 1.

In conclusion, we have studied classical and quantum
chaos in the general interacting-boson model of nuclei.
The most striking result is the discovery of a nearly regu-
lar region inside Casten’s triangle which is not related to
any of the three known dynamical symmetries of the
model. Since the model is realistic for a large volume of
nuclei, our results may be useful in classifying the degree
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of chaoticity in the low-lying collective states of nuclei
within the nuclear periodic table.
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