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Measurement of the Spectroscopic Quadrupole Moment of tg6Au: Experimental Verification
of the Large Prolate Deformation of the ' Au Ground State
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We report the first on-line measurements of quadrupole-interaction-resolved nuclear magnetic reso-
nance on oriented nuclei. The 10-min ' Au activity was obtained as daughter after cold implantation of
mass-separated " Hg into a hcp Co single crystal at the NICOLE facility at ISOLDE-3 (CERN). The
quadrupole interaction of ' AuCo(hcp) was fully resolved, and the spectroscpic quadrupole moment of
"Au was determined to be g =+3.12(20) b. This implies P2=+0.246(16), proving the large prolate
deformation of the "Au ground state.

PACS numbers: 21.10.Ky, 27.70.+q, 76.80.+y

From optical isotope-shift measurements of very light
gold isotopes with laser spectroscopy, a drastic change of
the nuclear charge radius was observed recently between
'" Au and ' Au, which has been interpreted as an onset
of strong prolate deformation of P2=0.25 in ' Au and

Au [1]. Although the interpretation of the large 6(r )
has been very convincing, it should be kept in mind that
neither the sign nor the absolute value of the deformation
can be inferred from those experiments. Thus, indepen-
dent information would be valuable, e.g. , from a direct
measurement of the spectroscopic ground-state quadru-
pole moment. Recently, Le Blanc et at'. reported a laser-
spectroscopy measurement of the ground-state quadru-
pole moment of ' Au, Q =+2.69(8) b, from which the
deformation parameter Pq =0.21 can be calculated within
the rotational model, which is significantly smaller than
the optical isotope-shift result [2]. In addition, they re-
ported Q(' 'Au) = —1.1(1) b. However, (i) it cannot be
anticipated that the Sternheimer eFect has been taken
into account correctly, and (ii) the negative quadrupole
moment of ' 'Au would be very hard to understand.

Thus, in addition to the well established laser tech-
nique, an independent technique would be desirable, with
which the magnitude and sign of electric quadrupole mo-
ments of nuclei far oF stability can be determined unam-
biguously. Here we report the first successful application
of such a new technique: quadrupole-interaction-resolved
NMR on oriented nuclei (QI-NMR-ON) after on-line
cold implantation into a hcp Co single crystal. The basis
for this new technique had been the observation that the
quadrupole substructure of ' Au (I'=2 ) and ' Au
(I"= '2) in hcp Co could be well resolved [3]. In this
pilot experiment, the Au isotopes had been implanted
with the rather high implantation voltage of 350 kV
available at the mass separator at Konstanz. Thus, be-
fore being able to proceed to on-line experiments, two to-

vl =~gptvBht/h(, vg =e qQ/h, (2)

where g and eQ are the nuclear g factor and the spectro-
scopic quadrupole moment, and Bhq and eq are the mag-
netic hyperfine field and the electric-field gradient
(EFG), respectively. The condition for nuclear magnetic
resonance is fulfilled for a set of 2I subresonances: As-
suming that the m =I state lies lowest in energy, the
center of the subresonance corresponding to rf transitions
between states ~m) and ~m+ I) is given by

I

vm —»i+i =vM «g(m+ (3)

pics had to be solved. (i) It had to be shown that it is
possible to improve the surface quality of the hcp Co sin-
gle crystals enough that the quadrupole substructure can
be resolved despite the relatively small implantation volt-
age of 60 kV available at the on-line mass separator
ISOLDE-3 at CERN. (ii) It had to be shown that the
quadrupole splitting can also be detected after cold im-
plantation.

Both problems have been solved. (i) By a sophisticated
combination of diFerent polishing steps the surface quali-
ty of hcp Co single crystals could be improved enough
that no deterioration of the NMR-ON linewidths at 60-
kV implantation voltage (in comparison to 350 kV) was
observed [4]. (ii) After cold implantation of ' "Au in hcp
Co exactly the same quadrupole splitting was obtained as
already known from warm implantation.

For the case of a combined magnetic dipole plus elec-
tric quadrupole interaction, both being collinear, the sub-
level energies F„, of a nuclear state with spin I are given
by

F„,= —hvMm+hvg [3m
' —1(I+1)]/4I(2I —1) .

Here vM and vg are the magnetic and electric hyperfine-
splitting frequencies defined as
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v~ vl =(I g )Avg . (5)

In the NMR-ON method, the resonance absorption is
detected via the change of the angular distribution of the
emitted radiation. The angular distribution W(8) and
the anisotropy A(0) of y rays emitted in the decay of
oriented nuclei at the temperature T are given by

= g Ag Bg (v~, vg, T)Pp (cos0) Qp . (6)
A=2, 4

The parameters Ap are products of the normally used an-
gular correlation coefficients Ug- and Fq which depend on
the spins and the multipolarities of the decay cascade.
The Pt, (cos8) are Legendre polynomials, 8 being the an-
gle between the quantization axis (here the c axis of the
hcp Co single crystal) and the direction of observation,
and Qq are solid-angle-correction coefficients. The Bq de-
scribe the degree of orientation; they depend on v~, vg,
and T. For hcp Co, v~ &&

~ vg~, the degree of orientation
is mainly fixed by the ratio hv~/k&T and is nearly in-
dependent of vg.

Samples were prepared from a hcp Co single crystal
available commercially. Disks with a diameter of = 10
mm and a thickness of =0.2 mm were spark cut from
the crystal, the c axis being oriented parallel to the plane
of the disk. The further treatment consisted of many
steps: (i) mechanical polishing with 15-, 9-, and 3-pm di-
amond emery paper; (ii) mechanical polishing with 1-,

where Avg is the subresonance separation defined as

5vg =3 vg/2I (2I —
1 ) .

The subresonance between the energetically lowest sub-
levels is denoted as the v] resonance, the next as v2, etc.
The v[ resonance has the largest amplitude and can hence
be measured with the highest precision. The oAset to the
magnetic hyperfine splitting is given by

0.5-, and 0.25-pm diamond paste, after each mechanical
polishing step the crystal was cleaned ultrasonically and
polished chemically; (iii) electropolishing (—30 min) in
H3PO4 (85%) with an abrasion rate of = 1 pm/h.

The pilot cold-implantation experiment with ' Au in
hcp Co was performed in the following way: A 100-pg/
cm Au layer was evaporated onto a 3-mg/cm Nb foil.
Four NbAu samples (2&&4 mm ) were irradiated for 6
days with thermal neutrons (&=8x10' n/cm s) in the
Munich research reactor FRM. The activated samples
were mounted in an empty target holder of the mass
separator ISOLDE-3 at CERN, and ' Au was cold im-
planted into a hcp Co single crystal kept at temperatures
below 100 mK in the NICOLE He- He dilution refri-
gerator. The NMR-ON spectrum is shown in Fig. 1.
The linewidth is I = 1.5(1) MHz, i.e., a factor = 3 larger
than obtained with 350-kV warm implantation in a single
crystal with a comparable surface quality [5]. However,
despite the larger linewidth, the quadrupole splitting
[vg= —15.25(20) MHz] is in perfect agreement with
the warm-implantation data [—14.92(20) MHz [3],—15.12(5) MHz [5], and —15.4(5) MHz [6]], proving
the applicability of the method for on-line measurements.

The main experiment on ' Au was performed as
follows: ' Hg (T1/2

—1.4 min), obtained from a
Pb(p, xpyn) spallation reaction using a liquid Pb target,
was implanted continuously at a rate of 2x10 atoms/s
into a hcp Co single crystal kept at temperatures around
10 mK in the NICOLE He- He dilution refrigerator.

Au (T~t2=10 min) is produced in situ by the decay of
Hg. As the spin-lattice relaxation time is much short-

er than the half-life, ' Au becomes oriented to a large
degree before it decays to levels in ' Pt. Thus, the
strong y rays with E =192 and 299 keV are emitted an-
isotropically and can thus be used as a detector for
NMR. Figure 2 shows a NMR-ON spectrum of the
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FIG. 1. NMR-ON resonances of the 412-keV transition of
' "Au in hcp Co measured with frequency steps 0.2 M Hz,
modulation bandwidth + 0.25 MHz, and total counting time 10
h. (c=W(0')/W(90') —(.l

Q.QQQ—

V2V3
I

285

v]
[ I I I

280 290 295 300 305
Frequency (MHz}

FIG. 2. NMR-ON resonances of the 192-keV transition of
'" Au in hcp Co measured with frequency steps I MHz, modu-
lation bandwidth + 1 MHz, and total counting time 6 h. The
magnetic hyperfine-splitting frequency vM is marked: top, cal-
culated as described in text; bottom, experimental.
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192-keV transition. The lowest three subresonances are
well resolved, which is su%cient for the determination of
vg and vM. The results are

vg = —74. 1 (3.1 ) M Hz, vM =281.6 (7) M Hz .

The following facts deserve to be mentioned. (i) The ab-
solute values for the resonance amplitudes are rather
small. The reduction with respect to the expectation ac-
cording to the experimental y anisotropy is estimated to
be 0.35(15). The relative amplitudes of the three ob-
served subresonances v] 2 3 follow well the decreasing
trend expected according to a Boltzmann distribution of
the sublevel populations. (ii) The magnetic hyperfine-
splitting frequency, which according to Eq. (5) is separat-
ed (for I =3) from the lowest subresonance by vM —vi
= —' Avg, is in good agreement with the expecta-
tion: Taking into account the hyperfine-splitting frequen-
cies of ' "Au and ' Au in Fe, vM(' AuFe) =259.5(l)
MHz [7], vM ('" AuFe) =372.0(6) MHz [8], and
vM(' AuCo) =196.86(4) MHz [5], we calculate
vM ('" AuCo) =282.2(5) MHz. This proves that the
three equidistant resonances originate from a quadrupole
splitting and that the spin assignment I=3 is correct.
(iii) During the on-line measurement, ' Ir"' was accu-
mulated via the decay

'" AU '" Pt(Tii2=2. 0 h)

~ '" Ir"'(I'=2 ' Tii2=1.7 h) .

After the on-line measurement, the NMR-ON resonance
of '" Ir"'Co was investigated. The result for the v~ reso-
nance is vi =277.57(9) MHz, in perfect agreement
with the respective result after warm implantation, v]
=277.66(2) MHz [9]. (Because of I =2 and an unfavor-
able A4/A2 ratio only the vi resonance has a reasonable
amplitude for ' Ir"'Co. ) However, the resonance ampli-
tude of the ' Ir"'Co v~ resonance after cold implantation
was reduced to 0.25(8) of the amplitude observed after
warm implantation with the same experimental condi-
tions. Taking this observation into account we can under-
stand the small absolute amplitudes for ' AuCo: Either
Hg is substituted with a smaller fraction to the regular
lattice sites in Co—with the cold implantation of ' Au
no significant decrease of the resonance amplitudes had
been observed —or, if Hg is initially implanted with a
large fraction onto regular lattice sites, the binding of Hg
onto these sites is so weak that the high-energy p decay
may induce a site change. From the perfect agreement of
the v] resonance center for ' Ir"'—despite the small
amplitude —we conclude that only the nuclei on regular
lattice sites contribute to the observed resonance signals
and that the observed quadrupole-splitting frequency can
be ascribed to the (small fraction of) nuclei on regular
lattice sites.

The presently known quadrupole-splitting frequencies
of Au isotopes in hcp Co are listed in Table I. For the

TABLE 1. Quadrupole moments of Au isotopes and
quadrupole-splitting frequencies in hcp Co.

Isotope

] 86A

19[A
' 'Au
'"Au
197A

] 98AU

'"Au

3 +
2
3+
2
3+
2
3+
2

3 +
2

vg (MHz)

—74. 1(3.1)

—14.35 (2)

—15.12(5)
—12.06(10)

g (b)

+3.12(20)
+0.716(21)
+0.664 (20)
+0.604 (22)
+0.547(16)
+0.637 (24)
+0.508 (20)

Reference

[10]
l10]

[»]
[3,5],a

[3]

"This work.
Linear interpolation between ' "" 'Au; see text.

(I+ I ) (2I+ 3)
3ZRO2 3K I(I+ 1)

(7)

Taking I =K =3 and Ra=1.258 ' fm, the deformation
parameter for ' "Au is found to be Pq =+0.246(16), the
absolute value being in perfect agreement with

~ p2~
=0.246 [13], and ~Pz~ =0.252 [14], deduced from laser-
spectroscopy isotope-shift measurements.

The EFG as derived here differs slightly from
eq(AuCo) = —0.90(4) && 10' V/cm derived via the
chain vg(' 'AuFe), vg(' AuFe), and vg(' AuCo) [3].
In this derivation there is one step which has an inherent
uncertainty: the ratio of the quadrupole splittings of

Au and ' Au in Fe, as these have been measured with
different techniques, namely, NMR for stable ' Au and
NMR-ON for radioactive ' Au. Although there is no
evidence in the literature that these techniques have

derivation of absolute values for the quadrupole moments
the electric-field gradient of Au in hcp Co has to be
known. It is obtained in the following way: The
hyperfine constants B( D3iq), which are proportion-
al to the spectroscopic quadrupole moments, for I

Au are experimentally known to be
—1192.4(6.2), —1106.5(4.6), and —911.21(72), respec-
tively [10], indicating a nearly perfect linear depen-
dence on A. With the quadrupole moment Q(' Au)
=+0.547(16) b [11], the quadrupole moments of

Au are obtained [10] as listed in Table I, and the
quadrupole moment of ' Au is predicted to be
Q(' Au) =+0.604(22) b. With the quadrupole split-
ting vg(' AuCo) = —14.35(2) MHz [9], we find

eq(AuCo) = —0.982(36) X10' V/cm . The quadrupole
moment of ' Au is then deduced to be

Q('" Au) =+3.12(20) b,

which is significantly larger than the laser-spectroscopy
result [2].

The configuration of ' Au is believed to be jx 2 [532]
@v —",

+ [624]/, i.e. , It =I [12]. The deformation param-
eter pz can be calculated using the rotational-model rela-
tionship
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different response functions for nuclei on nonequivalent
lattice sites, as resulting, e.g. , from different spin-lattice
relaxation times, such an effect cannot be excluded a
priori. It should be noted that the quadrupole moment of

Au as derived with eq (Au Co) = —0.982(36) x 10'
V/cm (see Table I) follows also the linearly decreasing
trend of Q vs A, supporting the derivation of the EFG as
presented here.

In conclusion, we have shown the following. (i) QI-
NMR-ON is a new method which allows the on-line
measurement of electric quadrupole moments of radioac-
tive nuclei far oA'stability. (ii) The resonance amplitudes
after direct cold implantation of Au are larger than the
amplitudes obtained if a Hg precursor is implanted. This
indicates either a large degree of nonsubstitutional im-
plantation of Hg or, as supported by other experiments
[9], a P-decay-induced lattice-site change. (iii) The spec-
troscopic quadrupole moment of ' Au determined in this
work proves the large prolate deformation of ' Au.
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