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Inner Structure of a Charged Black Hole: An Exact Mass-Inflation Solution
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Recently, Poisson and Israel have shown how when an electrically charged black hole is perturbed its
inner horizon becomes a singularity of infinite spacetime curvature —the mass infla-tion singularity In.
this paper we construct an exact mass-inflation solution of the Einstein-Maxwell equations, and use it to
analyze the mass-inflation singularity. We find that this singularity is weak enough that its tidal gravita-
tional forces do not necessarily destroy physical objects which attempt to cross it. The possible continua-
tion of the spacetime through this weak singularity is discussed.

PACS numbers: 04.20.Jb, 97.60.Lf

The issue of the final state of gravitational collapse is a
long-standing, open question in general relativity (GR).
It is widely accepted today that everything falling into a
black hole, including the collapsing matter that formed
the black hole, will eventually crash into a strong space-
like singularity of almost zero volume, in which spacetime
ceases to be classical and quantum gravity dominates the
physics. Nevertheless, there is an alternative possibility
of gravitational bounce: Infalling objects may avoid the
singularity and emerge out of a "white hole" into another
asymptotically flat universe [I]. The Reissner-Nordstrom
(RN) geometry, which is the unique solution of the
Einstein-Maxwell equations for static, spherically sym-
metric, electrically charged black holes, is an archetype
for this scenario. In the extended RN geometry, the cen-
tral singularity is timelike and all free-falling (electrically
neutral) objects avoid it, and eventually are ejected into
another external universe. Test particles in the extended
Kerr geometry show a similar behavior (however, we
shall restrict our attention here to RN-based models).
When a strictly spherical charged object collapses, it
leaves behind it a RN exterior. If the object is made of
charged dust, we can solve analytically for the interior
geometry as well [2]. For some range of initial condi-
tions, the interior dust evolves in a completely regular
manner, producing a "tunnel" to another universe [3].

The main objection to this idea is that the internal
parts of both the RN and Kerr geometries are unstable.
That is, the energy-momentum associated with various
massless test fields diverges at a certain null hypersurface
inside the black hole, called the Cauchy horizon (CH) or
the inner horizon [4]. This instability is crucial to the
question discussed here, because in the RN geometry any
object that falls into the black hole must cross the CH.
It is widely believed that if one were to consider, self-
consistently, the back reaction of the field's diverging
energy-momentum on the geometry, the regular CH
would become a curvature singularity. One would like to
know the features of this singularity. In particular, is it
sufticiently strong and violent to be regarded as a physical
boundary of classical spacetime?

Recently, Poisson and Israel (PI) invented a simple

model to explore the possible back-reaction eAect of the
diverging perturbations on the CH [5,6]. To simplify the
analysis, they modeled the infinitely blueshifted radiation
by an ingoing spherically symmetric stream of massless
particles. With such an ingoing stream, the RN
geometry is converted into the charged Vaidya solution
(CVS) [7]. In this solution, the CH is in fact a curvature
singularity. However, as was shown by PI, this singulari-
ty seems to be rather weak. This is expressed by the fact
that for a suitable choice of the coordinates the metric
functions approach a regular limit on the CH, and det(g)
remains nonzero [6]. In addition, none of the scalars con-
structed by contraction of the Riemann tensor or its prod-
ucts is divergent there.

However, PI have shown that this situation is drastical-
ly changed if one considers, in addition, beneath the
hole's event horizon, a flux of outgoing massless particles.
Such particles model a piece of the ingoing field that has
been backscattered by the hole's curvature and thereby
has become outgoing. (Such backscattering will always
be present. ) We do not know the explicit solution for the
case of two cross flows. Nevertheless, PI showed that the
mass function m (a generalization of the Schwarzschild
mass and the Vaidya mass function to generic spherical
geometries; see Ref. [6]) blows up at the CH. As this
divergence is exponential with retarded time (which is
infinite at the CH), PI call this phenomenon mass
inflation This divergen. ce of m guarantees that the scalar
R"'~ R„„,~~ is infinite at the CH, and therefore that the
mass-inflation singularity is somewhat stronger than the
CH singularity of the original CVS.

The most important physical consequences of the
singularity are tied to the question of whether it is strong
enough to destroy objects which hit it. The formalism
developed by PI does not answer this question, as it does
not give explicit expressions for the metric functions. It is
the main goal of this paper to construct an exact mass-
inflation solution and to use it to analyze the structure
and strength of the mass-inflation singularity.

As was shown by PI, the structure of the mass-inflation
singularity is virtually independent of the details of the
outgoing flux. We shall therefore consider an extremely
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dg 2 = —2e 2~dUdV+r (2)

Here V is an ingoing radial null coordinate (namely, in-

going photons move on V=const orbits), and U is the
outgoing radial null coordinate. We choose the coordi-
nate V to coincide with X along S. The coordinate U is as
yet unspecified, except that it increases with time and
we set U=O at S. We define the function R(k) to be the
value of r along S, namely, R(k)=r(V=X, U=O). We
shall now show how this function determines the geom-
etry on both sides (up to an integration constant).

From Eq. (1) it is clear that along any line U=const
we have

dr/dv = ,' f= —,
' (1+e /r ) ——m/r .

In particular, we obtain for U=0
R'/v'= —,

' (1+e /R ) —m/R,

(3)

(4)

short pulse of outgoing Aux, beyond which the geometry
is described by another CVS. Such a short pulse can be
modeled, mathematically, as a null layer of energy with
vanishing thickness. We shall construct an exact mass-
inflation solution by matching two patches of CVS
through such an outgoing null "thin layer" (see Fig. 1).
Then, using this explicit solution, we shall show that the
mass-inAation singularity is, in fact, so weak a singularity
that extended objects hitting it are not necessarily des-
troyed. Hence, if the mass-inflation singularity is a gen-
eric feature of gravitational collapse, as suggested by PI,
the intriguing possibility of objects crossing the Cauchy
horizon is not ruled out by the instability of the CH.

The charged Vaidya solution is given by the line ele-
ment

ds = —f(r, v)dv +2drdv+r dA

where f= 1
—2m—(v)/r+e /r, the constant e is the black

hole s electric charge, and v is an ingoing null coordinate.
The arbitrary mass function m(v) determines the flux of
ingoing radiation, which is proportional to dm/dv.

Let us now consider the matching of two patches of
CVS (denoted region 1 and region 2 in Fig. 1) along an
outgoing thin null layer S. We shall use the subindex 1

(2) for quantities defined in patch 1 (2) (unindexed
quantities will refer to both patches). We require that
the metric tensor be continuous at 5; hence, the coordi-
nate r is continuous. Since the null Auid is assumed to be
electrically neutral and pressureless, the thin layer 5
which models it has a vanishing electric charge and a
vanishing surface tension (i.e., vanishing nonradial com-
ponents of surface stress-energy). This implies that (i)
the constant e is the same in both regions 1 and 2, and
(ii) the affine parameter X along S is the same on its two
sides [8]. We shall take X to increase with time, and set
k =0 at the CH.

Since the overall geometry cannot be described by the
CVS, we shall also use double null coordinates:

FIG. 1. Penrose diagram of the spacetime formed by the
matching of two CVS patches along the thin layer S.

where the prime denotes a derivative with respect to k.
In addition, the geodesic equation for v" reads for U=0

v"=v'(e'/R' m/R'—) . (s)

From Eqs. (4) and (6), we obtain the three matching
equations in an explicit form:

m(X) =(R/2)(1+e'/R ) —zR', (7)

v(X) = (R/z)dX, (8)

z(X) =Z+ —,
' (1 —e /R )dl. (9)

Here Z is an integration constant. We omitted the in-
tegration constant in Eq. (8) because adding a constant
to v does not make any physical difference. Equations
(7)-(9) completely determine the CVS on both sides of
S, once R(X) and the integration constants Z~ and Zq are
given. The (k-dependent) mass of the thin layer, Am(k)
—:mz(k) —m~(A, ), is obtained directly from Eqs. (7) and
(9):

~m(x) =(z, —z2)R'(x) . (lo)

In order to apply this formalism to the problem of in-
terest, we must determine the relevant function R(X) and
the two integration constants Z~ and Zq. R(X) and Z~
are to be determined from the well-known features of the
CVS in region 1, which is, in fact, a slightly perturbed
RN solution. In particular, the CH (k =0), which corre-
sponds to v~ ~, is located at r =ro, where ro—=mo
—(mo —e ) ', and mo is the final mass of the black hole
after it has absorbed all the ingoing radiation. It is con-
venient to express the mass function in region 1 as
m~(v~) =mo —Bm(vi), where Bm(v~) represents the
mass contribution associated with the radiative tail which

Combining Eqs. (4) and (5) yields a closed equation for
z(X) —=R/v':

z'= —, (I —e'/R') .

790



VOLUME 67, NUMBER 7 PH YSICAL REVIEW LETTERS 12 AUGUST 1991

where the constant p depends on the perturbation under
discussion, and is ~ 12 [6].

Since R =ra at X, =0, we can approximate Eq. (9) near
X=O by

z(X) =-Z+ —,
' (1 —e /r0)k =Z —kar0X, (12)

where k0= (2r0) '(e /ro —1) & 0. Hereafter, the
sign means "equals, asymptotically, as k 0."The diver-

gence of v~ at X =0 demands vI (X =0) =~, which, in

view of Eqs. (8) and (12), implies Z~ =0 and therefore
yields v~(k) —= —(I/k0)lnlkl.

The relevant function R(X) may be determined from
the mass function m~(v~) by applying Eq. (3) to U=O.
By linearizing this equation in 6m and BR:—R —r0, we

obtain 8R(v~)=(k0r0) 'Sm, which, in terms of X, be-
comes

~R(~) ~( —»l~l)' '. (13)

To obtain a positive-energy thin layer at 5 we choose
Z2&0. Equations (10) and (13) now yield the mass-
inflation formula, Am(X) ee lkl '( —lnlkl) ~, or, corre-
spondingly,

Am(v~) ~ v~ ~exp(kav~) . (14)

This conforms with the result fo PI [cf. Eq. (4.12) in Ref.
[6]].

We will be mainly interested in the mass function
mz(vz), as it completely determines the geometry in the
mass-inflation region (V=O, U&0). From Eqs. (8) and
(12) we obtain v2(k) = (r0/Z2)k, and therefore

m2(v2) =Am( )v2~ lvql '( —Inlvql) (I S)

It is convenient to use the (U, V) coordinates to de-
scribe the geometry in the mass-inflation region. To com-
pute r(U, V) we use Eq. (3), which reads

ar/aV ~ar/Bv~= —m2/r ~ —(rlVl) '( —lnlVl)

and can be immediately integrated. To calculate
a(U, V), we recall that the transformation from (r, v) to
(U, V) coordinates yields

e = —(8r/'dU)dv, /dV = (ar/aU) v 2 . —

In the following we shall restrict our attention to the close
vicinity of U=O. For a suitable choice of the coordinate
U one obtains, to the leading terms in U and (lnl Vl)

r(U, V) =—r0 —U+ ( —lnl Vl) ' ~xconst,

o'(U, V) =a0+ U( —lnl Vl) ' I'x const,

(16)

(17)

where o0 is a constant. Clearly, both o. and r are finite at

dominates the late-time behavior of realistic perturba-
tions. The relevant asymptotic form of Bm(v~) is given

by

Bm(v~) ~ vt

V=O. This follows from the fact that, although the mass
function in Eq. (15) diverges, its integral over vq is finite.
Recall that the term —U in Eq. (16) represents the con-
traction of the CH with time, due to the focusing effect of
the outgoing Aux. This contraction continues until the
CH shrinks to r =0. [Equations (16) and (17) are valid

only for small U, where r = ro, the extension of this anal-
ysis to later stages is straightforward, but we shall not
present it here because of space limitations. ]

We are now in a position to discuss the physical prop-
erties of the mass-inAation singularity. Unlike the origi-
nal CVS singularity at the CH, some of its curvature sca-
lars blow up (e.g. , R" ~'R„~,q~m ). More important
physically than this blowup, however, is the issue of
whether the tidal forces associated with this curvature
singularity are strong enough to destroy any realistic ob-
ject which attempts to cross it [9]. Because of the diver-
gence of the tidal force, we can neglect all internal
stresses, and model any extended object falling into the
singularity as a collection of pointlike particles that move
on timelike geodesics. If such an "object" suffers an
infinite distortion (either a compression or a stretch) due
to the diverging tidal forces, we shall regard the singular-
ity as a strong one (this criterion is almost identical to
that of Tipler [9]). If the distortion is finite in all three
directions, we shall regard the singularity as weak. The
strength of the singularity is crucial to the possibility of
classically extending the spacetime beyond the singulari-
ty. For a strong singularity such an extension is mean-
ingless, because an observer will never be able to cross the
singularity: He will be completely destroyed during its
approach to the singularity. On the other hand, in the
case of a weak singularity, the possibility exists of cross-
ing the singularity without being destroyed; hence, one
cannot exclude the possibility of a classical extension.

From Eqs. (16) and (17) one can show that the rate of
growth of the curvature (and the tidal forces), as ex-
pressed by the tetrad components associated with a free-
falling observer, is proportional to r llnl r l l ~, where r
is the observer's proper time. [This is also the rate of
growth of curvature in the singular CH of the original
CVS in patch 1; cf. Eq. (BS) in Ref. [6].] The tidal
forces are proportional to the second time derivatives of
the distances between various points of the object. By in-

tegrating this expression twice, one finds that as the
mass-inflation singularity is approached (r =0), the dis-
tortion remains finite. This is closely related to the fact
that both metric functions r and cx are finite at V=O
[Eqs. (16) and (17)], and that det(g) is nonvanishing.
The criteria for strength of singularities given by Tipler
[9] and by Ellis and Schmidt [10] give this same result:
The mass-inAation singularity is a weak one; hence, clas-
sical continuation beyond it is not excluded.

If classical spacetime does extend beyond the CH, how
can we determine the right extension? Of course, one of
the candidates is the analytic RN continuation, in which
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the black hole is a tunnel to other universes. But many
other extensions are possible as well. Classical general
relativity (GR) cannot uniquely determine the extension:
Even in the case of pure RN (where there are no pertur-
bations and the CH is completely regular) classical GR
cannot give a definite prediction about the geometry
beyond the CH. (Such a prediction requires additional
initial data. )

It has long been recognized that at some stage of the
evolution of spacetime during gravitational collapse, clas-
sical GR must be replaced by a more fundamental theory
of spacetime —presumably quantum gravity (QG). This
more fundamental theory is expected to prevent the for-
mation of the spacetime singularities, which, according to
classical GR, must exist inside black holes. It is probably
QG that will determine the right continuation beyond the
CH. We expect QG to tell us (i) whether spacetime ex-
tends classically beyond the CH; (ii) if it does, what the
right classical continuation is; and (iii) if it does not,
what kind of existence there is beyond the CH. Unfor-
tunately, despite great eff'ort in recent decades, we do not
have yet a complete formulation of QG. However, some
basic elements of that theory are well understood, and
perhaps this will enable one to gain some insight into the
question of the right continuation.

Even if spacetime extends classically beyond the CH,
the CH itself and its immediate vicinity must be de-
scribed by QG. The possibility of a quantum state which
forms a bridge between two classical states might look
somewhat strange, but a simple analog in a one-di-
mensional Schrodinger scattering problem shows that it is
not unlikely. Consider a well-localized wave packet (a
semiclassical particle, analogous to the semiclassical
geometry) which moves freely until it hits a narrow po-
tential barrier. Of course, inside the barrier itself (which
is analogous to the CH) the classical description is mean-
ingless. Still, if the barrier is sufficiently narrow, the
wave packet will tunnel through it, with a negligible
scattering. The state after the scattering is again semi-
classical.

It should be pointed out that any classical extension
beyond the mass-inflation singularity will require an in-
finite ingoing flux of negative energy along the CH. This
is a consequence of the diverging derivatives of the metric
functions there [11]. One should not regard this as an
impossible obstacle, because, as discussed above, the CH
itself must be described by QG. Already in the frame-
work of quantum field theory in classical curved space-
time, which is often regarded as the first step toward QG,
one finds fluxes of negative energy. Interestingly, analy-
ses of the renormalized stress-energy of the quantum field
in RN spacetime (based on a simplified, two-dimensional

model) show an infinite ingoing fiux of negarite energy
along the CH [12]. Therefore, there is no reason to as-
sume that QG will forbid such a flux of negative energy.
One may compare the situation here to the semiclassical
particle discussed above. When this particle is crossing
the barrier, its kinetic energy is negative, which is classi-
cally forbidden.

Although it is not at all clear whether the spacetime
extends classically beyond the CH, it is rather disturbing
that such a possibility exists. It is often believed (or
hoped) that classical GR protects itself against such am-
biguous situations in which an observer may reach (alive)
the limit of predictability. This is the essence of the
strong cosmic censorship conjecture. The model dis-
cussed here suggests that perhaps this is not the case.
Just how generic the mass-inflation singularity is remains
an open question. PI [6] suggest that the mass-inflation
phenomenon may be rather generic, and not limited to
spherically symmetric perturbations. This suggestion is
strongly supported by a recent analysis of the evolution of
nonspherical scalar field perturbations on the spherical
mass-in[]ation background [13].
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